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Abstract

Cerebrovascular health is of great concern, especially in the ageing population, as stiff
vessels are linked with diseases such as stroke, dementia, and age-related disabilities.
Data from brain imaging techniques, including magnetic resonance imaging (MRI) and
transcranial Doppler ultrasound (TCD), can be used to infer information regarding the
health of underlying arteries. Such health assessments are commonly based on an index
that is dependent on the properties of the device and can be related to known vascular
health factors by a mathematical model.

The contribution of this thesis to the field of cerebrovascular health and brain imaging
is twofold: First, we develop a timing index (TI) as a measure of cerebrovascular health.
The relationship between TI and vascular health factors is derived in the context of
pressure waveforms using transmission line theory and Windkessel model models. The
proposed formula for TI matches data reported in the literature and helps to understand
the flattening behaviour observed in the arrival time of reflected waves in aged subjects.
Using similar mathematical modelling we also derive an expression for the relationship
between the existing augmentation index (AI) and the same vascular health factors.
Together with existing pulsatility index (PI) results, we show mathematically that TI
is potentially more strongly related to vessel stiffness than either of the two indices
currently used to index cerebrovascular health i.e., PI and AI. This is particularly so in
younger to middle-aged subjects where interventions are best applied. We then show
that TI can be applied to TCD measurements of blood flow velocity. To our knowledge,
this is the first use of wave reflection time to measure vascular health in the brain.
Transcranial Doppler Ultrasound Timing Index (TITCD) shows a significant correlation
with age. Furthermore, compared to the existing transcranial Doppler augmentation
index (AITCD) and transcranial Doppler pulsatility index (PITCD), the TITCD show
stronger correlations with cardiorespiratory fitness and the magnetic resonance imaging
pulsatility index (PIMRI).

The second contribution of this thesis is in its application of near-infrared spectroscopy
(NiRS). Firstly, we propose a NiRS signal model capable of producing synthetic NiRS
signals comprising low-frequency components, arterial pulsation signals, reflected waves,
Mayer and respiratory waves and a haemodynamic response function. The model out-
puts are compared with measured NiRS signals, and it is shown that the modelled
signal is equivalent to the recorded signal as a later set of recordings on the same chan-
nel. Then, as an emerging tool for measuring cerebrovascular health, we propose a novel
algorithm for locating systolic and reflected peaks on an averaged NiRS signal, thereby
applying the TI to NiRS. The new near-infrared spectroscopy timing index (TINiRS)
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shows stronger correlations with age, cardiorespiratory fitness (CRF) and PIMRI than
the pulse relaxation function (PReFx) which is an existing NiRS-based vascular health
index.

Compared with existing brain imaging techniques, NiRS offers several advantages,
such as being inexpensive, portable and easy-to-use. The NiRS-related contributions of
this thesis are the development of a NiRS signal model and a NiRS-based cerebrovascular
health measure. These will help in the development of a technique for the routine
clinical measurement of cerebrovascular health. Such a technique would facilitate early
intervention in the progression of vascular stiffness with age and, potentially, vascular-
related diseases such as stroke and dementia.
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Chapter 1

Introduction

1.1 Problem Statement & Motivation

In the human body, the arteries have the vital task of carrying oxygenated blood from the
heart toward arterioles and capillaries, which supply nutrition to cells around the body.
While the blood pressure at the beginning of the arterial system; i.e., the left ventricle, is
highly pulsatile, the arteries smooth out this pressure to protect downstream arterioles
and capillaries. Arteries stretch during systole, when high-pressure blood is forced from
the left ventricle, and recoil during diastole, when the heart is resting, which damps
fluctuations in blood pressure. This ability of the arteries is referred to as compliance.
Arteries lose their compliance and become stiffer with low physical activity [1] and with
ageing even in the absence of other vascular disease or risk factors [2]. Arterial stiffening
is an important risk factor in cardiovascular mortality [3] and the European guidelines for
managing arterial hypertension recommend arterial stiffness measurement to evaluate
target organ damage [4].

Cerebrovascular diseases were categorized as the fifth most common cause of death in
the United States in 2017 [5], and lead to cognitive impairment, stroke and dementia.
Stiffening of cerebral arteries which is an inevitable consequence of ageing [2], con-
tributes to compromised cerebrovascular health by increasing pressure fluctuations and,
therefore, damaging arterial wall structures over time [6].

Measuring vascular health is especially difficult inside the brain, which is enclosed by
the skull and floats in cerebrospinal fluid (CSF). Currently accepted technologies for the
assessment of cerebrovascular health are magnetic resonance imaging (MRI) and tran-
scranial Doppler ultrasound (TCD), which can either measure compliance or produce
a vascular health index. Among them, MRI has relatively poor temporal resolution
and is costly and time consuming to use for simple and routine monitoring of vascu-
lar health in the general population. Meanwhile, TCD is criticized for being highly
operator-dependent and unable to be used with up to one-fifth of the population due
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Introduction 2

to temporal bone thickness [7–9]. In addition to the technological difficulties inherent
in these devices, a commonly accepted measure of cerebrovascular health is lacking. In-
stead, various indices are proposed for each device without a clear explanation of their
connection to vascular health factors.

Near-infrared Spectroscopy (NiRS) is a relatively new technology that measures re-
gional blood volume changes through the absorption of near-infrared (NiR) light, mainly
by oxygenated blood inside cerebral arteries [10, 11]. NiRS offers high temporal reso-
lution and is sufficiently sensitive to detect changes in blood volume during cardiac
cycles. Therefore, NiRS allows local studies of cerebrovascular behaviour and possible
assessment of cerebrovascular health [10].

In this thesis, first, we aim to clarify the relationships between commonly used indices
and vascular properties using mathematical models. Although correlations between such
indices and health factors are frequently reported in the literature, we believe that the
true relationship between these indices and blood and vascular haemodynamics are more
complex. Nonetheless, formulating the commonly used indices will help us explain how
these indices change with age and other health indicators and also help us define a
new index more suitable for the NiRS. We hypothesize that a timing-based index is a
strong cerebrovascular health indicator. A pure timing index is in particular practical for
NiRS signals they tend to be heavily affected by noise and have incomparable intensities
across channels. Therefore, we propose a new timing index (TI) by studying pressure
waveforms and showing that TI is related to vascular health factors. Then, we test our
hypothesis using blood flow velocity data and showing TI correlation with age and other
health indicators. Finally, we extend the application of the proposed index to assessment
of cerebrovascular health using NiRS. Using experimental NiRS data we mathematically
model NiRS signals and then assess the performance of a NiRS-based TI for estimating
cerebrovascular health.

1.2 Thesis Outline and Contributions

The thesis is organized into the following chapters: background, a mathematical model
of wave reflection, indexing cerebrovascular health using TCD, a mathematical model
of the NiRS signal, indexing cerebrovascular health using NiRS, and conclusions and
future research directions. Here, we will have an overview and the contributions of each
chapter and related publications and conference presentations (see Section 1.2.1 for the
list of references used in this section).

Chapter 2 provides an extensive literature review of vascular health indicators, mathe-
matical models of the vascular system, devices used for the assessment of vascular health
and current indices and measures of vascular health.
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In Chapter 3, we use a transmission line (TL) and a Windkessel model (WK) to simu-
late blood waveform propagation and derive a mathematical expression for the reflection
time (Trefl), which is the time it takes for the blood wave to reach a bifurcation site (or
anywhere that reflection may happen), reflect back and hit the forward travelling wave.
We next derive a mathematical expression for the augmentation index, a commonly used
pressure and flow velocity health index. The derived formulas are then successfully ap-
plied to data from the literature and the results confirm the dependency of both indices
on the vascular ageing indicators such as compliance, pulse wave velocity (PWV) and
systemic vascular resistance. Finally, we use the new mathematical expressions to inter-
pret commonly observed trends in Trefl and AI, such as the flattening with age, changes
with heart rate and the phenomenon known as “distal movement of the reflected site”.
The main contribution of this chapter is the mathematical expressions derived for Trefl

and AI and their benefit in explaining commonly observed experimental phenomena.
Part of the material in this chapter is published in [J2].

The model developed in Chapter 3 motivated us in proposing a new timing-based in-
dex of cerebrovascular compliance. Based on our modelling in Chapter 3, we hypothesize
the new TI, which is the inverse of Trefl, is strongly related to the vascular health factors
effected by CRF. In Chapter 4, this hypothesis is tested using two sets of experimental
data of TCD blood flow velocity waveforms collected in a healthy adult population. The
experimental results show that TITCD has a stronger correlation with cardiorespiratory
fitness (CRF) than the existing AITCD and PITCD. We also make note that PITCD as
the most commonly used TCD index, should be interpreted with caution due to its com-
plex relationships with cerebrovascular resistance (CVR) and vascular stiffness. This is
because each of these components has opposite effects on this index, resulting in PITCD
having a weak correlation with age and no correlation with CRF. The main contribu-
tion of this chapter is the proposed TCD-based vascular health index, TITCD which is
shown experimentally to have several advantages over the existing TCD-based indices
of vascular health. The material in this chapter is published in [J3] with preliminary
results presented in [P2].

Moving towards the goal of estimating cerebrovascular health using NiRS, in Chapter
5 we propose a mathematical model for NiRS signal which is capable of producing
synthetic data. The model includes all the known elements of the NiRS signal such as
low-frequency (LF) components, arterial pulsation (AP) signals, reflected waves, and
Mayer and respiratory waves and can be used to provide ground-truth NiRS signals to
facilitate the assessment of new and existing NiRS signal processing algorithms. More
importantly, the proposed model can help to better understand the components of NiRS
signals with the aim of designing a new NiRS-based cerebrovascular health index. The
accuracy of the model is assessed using the cross-fuzzy entropy (CFEn) measure, which
indicates high similarity between the synthetic and in vivo data. The model is then
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used to assess TI and AI changes with age and HR. Later in this chapter, we propose
a NiRS peak-detection algorithm and use the model to examine the effects of system
parameters on the accuracy of the algorithm. The main contribution of this chapter
is the new mathematical model of the NiRS signal and the new NiRS peak-detection
algorithm. A preliminary version of the model is published in a conference proceedings
[C1] and the final version is published in [J1].

In Chapter 6 we propose a TI measure of cerebrovascular health for NiRS called TINiRS,
which builds on the success of TITCD (Chapter 4) and the peak-detection algorithm de-
rived in Chapter 5. We hypothesize that TINiRS, similar to TITCD, is an indicator of
cerebrovascular health. Then, using in vivo data we show that TINiRS correlates signif-
icantly with age, CRF and other cerebrovascular health indices derived from TCD and
MRI data, indicating it has high performance in tracking changes in the cerebrovascular
system. The TINiRS offers a potentially valuable means of indexing vascular health and
has superior cost, portability and widespread implementation potential compared with
existing techniques. The main contribution of this chapter is the experimental valida-
tion of the proposed NiRS vascular health index, TINiRS. The material in this chapter
is published in [J4] while some of the material covering the application of the existing
PReFx index to the current data is presented in [P1] and [P3].

Conclusions and a discussion of future work are provided in Chapter 7.

1.2.1 Publications

Journal Publications
[J1] R. G. Afkhami, F. R. Walker, S. Ramadan, and S. J. Johnson, “A Dynamic Model of Brain Hemo-

dynamics in Near-infrared Spectroscopy,” IEEE Transactions on Biomedical Engineering, 2019; 67(6)

2103–2109.

[J2] R. G. Afkhami and S. J. Johnson, “Wave reflection: More Than A “Round Trip”,” medRxiv, 2020.

doi: 10.1101/2020.03.30.20048223. Submitted to Medical Engineering & Physics.

[J3] R. G. Afkhami, R. Wong, S. Ramadan, F. R. Walker, and S. J. Johnson, “Indexing Cerebrovas-

cular Health Using Transcranial Doppler Ultrasound,” Ultrasound in Medicine & Biology, 2021; doi:

https://doi.org/10.1016/j.ultrasmedbio.2020.12.022.

[J4] R. G. Afkhami, F. R. Walker, S. Ramdan, R. Wong, and S. J. Johnson, “Indexing Cerebrovascular

Health Using Near-infrared Spectroscopy,” Submitted to Scientific Reports, 2020.

Conference Proceedings
[C1] R. G. Afkhami, K. Low, F. R. Walker, S. J. Johnson, “A Dynamic Model of Synthetic Resting-

state Brain Hemodynamics,” In 26th European Signal Processing Conference, Rome Italy, Sep. 2018, pp.

96–100.

Other Conference Presentations
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Meeting, NIR2019, Gold Coast Australia, Sep. 2019.

[P2] R. G. Afkhami, S. J. Johnson, R. Wong, S. Ramdan, and F. R. Walker, “An Investigation of Tran-

scranial Doppler Ultrasound Techniques to Measure Cerebrovascular Compliance,” In The Australian

chapter of the Organization of Human Brain Mapping (OHBM), Newcastle Australia, Oct. 2019.

[P3] R. G. Afkhami, S. J. Johnson, S. Ramdan, and F. R. Walker, “An Investigation of Near-infrared

Brain Imaging Techniques to Measure Cerebrovascular Compliance,”  In The Australian chapter of the

Organization of Human Brain Mapping (OHBM), Newcastle Australia, Oct. 2019.



Chapter 2

Background

In this chapter, we first provide a concise medical overview of the structure and func-
tioning of the vascular system and define vascular compliance, resistance and pulse wave
velocity. Then, we review mathematical models of the vascular system, imaging tech-
nologies and current approaches to measuring arterial stiffness and indexing arterial
health.

2.1 Biological Viewpoint

As we know, the heart is the main organ of the cardiovascular system, pumping blood
repeatedly throughout the entire body. Each cardiac cycle has a relaxation phase, or
diastole, which starts with the closure of the aortic valve. During diastole, the heart
fills with blood. The diastole is followed by a contraction phase, or systole, which starts
with the closure of the Mitral valve (connecting the left atrium to the left ventricle) and
continues by ventricle ejection, sending out the blood to the aorta and lungs. Figure 2.1
shows the change in aortic pressure during a single cardiac cycle. Large arteries carry
blood away from the heart and along the way, the arteries branch into smaller and smaller
vessels until they become microscopic arteries called arterioles, which provide the main
vascular resistance to blood flow. After the arterioles, blood enters the capillaries, which
are only 5-10µm in diameter and connect the arterioles to the venules. Capillaries and
small post-capillary venules are the main sites of exchange of water, oxygen and other
nutrients. The de-oxygenated blood is then carried back to the heart by the veins.

2.1.1 Vascular Resistance & Compliance

Blood vessels, depending on their characteristics, offer a kind of resistance to the blood
flow. This phenomenon can be formulated by Poiseuille’s law [12], which shows that the
resistance is inversely proportional to the 4th power of vessel radius. Total Peripheral

6
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Figure 2.1: Aortic pressure wave during one cardiac cycle of systole and diastole

Resistance (TPR), also known as systemic vascular resistance, is the resistance of the
entire circulatory system to the blood flow.

Arteries and veins have the ability to expand and contract with changes in pressure;
this feature of the blood vessels is measured in terms of stiffness or compliance. Com-
pliance is especially important in the larger arteries and helps regulate highly pulsatile
blood pressure before blood reaches the small arteries and arterioles. Compliance (C)
is inversely proportional to stiffness and is defined as changes in the blood volume (V)
for a given change in pressure (P ) that is,

C =
dV
dP

. (2.1)

Compliance is expressed in cm3 kPa−1. Calculating C is difficult because even if one
injects a known volume of blood into the arterial system, the losses of blood in the
periphery are unknown. Therefore, several methods for estimating compliance have
been proposed in the literature. Higher compliance for a blood vessel means that it
deforms more easily when pressure is applied, in that sense, compliance of the veins is
around twenty times higher than that of arteries [13].

It is known that both vascular resistance and vascular compliance change with age
[14, 15]. Even with no underlying disease, ageing itself is associated with structural
and functional changes in the cardiovascular system [16]; specifically, a reduction in the
elastic component and increase in the inelastic (collagen) component of the arterial wall
[15]. TPR increases slightly with age which, in part, elevates arterial stiffening [16].

2.1.2 Pulse Wave Velocity

Pulse Wave Velocity (PWV) is the speed of the blood waves and is measured in ms−1.
It is known for its strong association with stiffness, and the carotid-femoral pulse wave
velocity (cf-PWV) is considered to be the gold standard for measuring aortic stiffness
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[4, 15]. PWV is inversely proportional to arterial radius and, as arteries lose their
stiffness, the PWV increases. PWV is commonly measured by applanation tonometry,
which uses a high-fidelity strain gauge pressure transducer to record pressure waveforms
from common carotid, brachial or femoral arteries. Often, a transfer function is used
to estimate pressure in the aorta. The Cf-PWV is considered the gold standard for
measuring arterial stiffness [15], whereas other PWV measures, such as brachial-ankle
pulse wave velocity (ba-PWV) and brachial-femoral pulse wave velocity (bf-PWV) are
also commonly reported in the literature. It has been shown that PWV is inversely
proportional to the square root of total arterial compliance [17] and changes positively
with vascular resistance [18]. The relationship of PWV with the structural properties
of the arterial system, such as compliance and resistance, makes it ideal for tracking
vascular health. This is due to the fact that although health related structural changes
in the arteries are well-known, direct measurement of vascular compliance or resistance
is not readily feasible.

The PWV is closely related to the concept of wave reflection. It is known that after
a blood wave travelling from the heart hits vascular bifurcation points, a portion of the
wave reflects back towards the heart eventually augmenting the incident waveform. In
a healthy vascular system where PWV is low, both incident and reflected waves travel
at low speed and, therefore, the reflected wave joins the incident wave later during the
diastole, thereby decreasing the pulse pressure (PP). However, with increased PWV, the
augmentation of the two waveforms occurs in late systole, increasing the systolic pressure
and PP and putting arterial walls under stress. Based on the location of measurement,
the pressure waveform can have two distinct peaks for the systole and the reflected
wave or either peaks might be in the form of an inflection point (see Fig. 2.2). Hence,
analysing the time of occurrence of the systolic and reflected peaks and the start of the
systolic phase can provide indications of PWV and vascular health [2, 19].

2.1.3 Vascular Resistance & Compliance in The Brain

Age related changes in vascular structure are of great importance especially in the brain
where elevated cerebrovascular stiffness can lead to vessel damage called small vessel
disease (SVD) that can lead to cognitive decline and Alzheimer’s disease [20]. Nonethe-
less, the impracticality of measuring cerebral haemodynamics like blood flow, blood
pressure or vascular wall properties makes it difficult for scientists to validate methods
of estimating cerebrovascular compliance.

In our body, elastic arterial walls have a storage mechanism for flow pulsatility, con-
verting pulsatile arterial blood flow to steady peripheral flow. The brain, however, is
enclosed in a rigid container and any pulsation from the arterial walls is felt imme-
diately everywhere throughout the cranium. The overall compliance of the cerebral
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Figure 2.2: Sample (a) aorta and (b) radial pressure waveforms (simulated). Red
lines represents incident waves and blue lines represent reflected waves.

arteries provides a steady blood supply for the brain [21]. As the most complicated
part of the human body, the brain needs a massive blood supply which is provided by
two pairs of arteries the internal carotid arteries and the vertebral arteries. These four
arteries deliver around 12.5ml s−1 of blood to the brain [22]. After supplying the brain
with oxygen and nutrients, de-oxygenated blood finds its way to the heart through the
veins. The brain is surrounded by the cranium, which is filled with an incompressible
fluid called cerebrospinal fluid (CSF). The CSF is produced in cerebral ventricles and is
found in the brain and spinal cord. In adults, the CSF volume is typically 125-150ml and
is produced at a rate of 25mlh−1 [23]. The CSF helps reduce the effective brain weight
from 1500g to 50g, allowing the brain to maintain its density without being damaged
by its own weight, and also acts as a shock absorber. Besides, it provides a medium
for transferring nutrients and waste products to and from the brain tissue. After cir-
culation, CSF is reabsorbed in the suer sagittal sinus [23, 24]. The pressure inside the
cranium is called the intracranial pressure (ICP) and ranges between 1kPa and 2kPa in
healthy adults in a lying position. Other than its clinical importance, the ICP controls
the cerebral perfusion pressure (CPP), which is defined as:

CPP = MAP− ICP (2.2)

where MAP is the mean arterial pressure. The CPP is the pressure gradient that causes
blood flow to the brain at a rate of:

CBF = CPP/CVR. (2.3)
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In which CBF is the cerebral blood flow and CVR is the cerebrovascular resistance. The
Monro-Kellie hypothesis states that the brain is surrounded by a non-expandable bone,
the brain tissue is nearly incompressible and the volume inside the cranium is constant.
Therefore, the total volume of the cranial elements, blood (arterial and venous blood
volumes, i.e., Va+Vv), brain tissue (Vtiss) and CSF (VCSF) are fixed and increases in any
of them must be compensated for by an equivalent decrease in another, i.e., [22, 25, 26]

dVa
dt

+
dVv
dt

+
dVCSF
dt

+
dVtiss
dt

= 0. (2.4)

Both cerebrovascular compliance and the compliance of the CSF space and brain tis-
sue contribute to pulsation absorption, which helps the blood to flow more steadily
into the brain. Invasive pressure-volume measurements of the brain show that there is
an exponential relationship between ICP and brain volume [21, 26]. Figure 2.3 shows
that the pressure pulsatility increases (low compliance) with increasing mean pressure.
Under normal physiological conditions (blue area in the figure), the high intracranial
compliance allows only small changes in ICP for a given change in volume. However,
with elevated ICP levels, the intracranial volume compensatory capacity becomes ex-
hausted and compliance drops, causing huge increases in intracranial pressure with small
increases in volume.

As the cerebral arteries become stiffer, the cerebrovascular system loses its ability to
cushion the arterial blood pulsations. As a result, highly pulsatile pressure waves reach
small arteries and arterioles and, over time, damage arterial walls [27]. This condition
is called small vessel disease (SVD) which reduces cerebral blood flow and damages the
function of the blood-brain barrier, a system that protects the brain from circulating
pathogens [27–29]. SVD is a type of age-related loss of brain health causes cognitive
decline and non-cognitive disorders [28].

From vascular resistance point of view, compliance of a vessel means it can reduce its
resistance by stretching to allow for a smooth pressure change. Age progression builds
up collagen fibres in the vascular wall, which increases stiffness and decreases the overall
resistance of the vascular system. In addition, ageing causes thickening of arterial walls
and reduces the interior arterial cross-sectional area, thus increasing TPR [30]. The
age-related changes in vascular resistance are coupled with stiffening of the vessels and
increases in PWV [16, 30]. Therefore, the general health of the vascular system is a
function of many changes in vascular structure and an index of cerebrovascular health
should consider all these factors.
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Figure 2.3: Relationship between intracranial pressure and volume in the human
brain showing regions of high and low compliance

2.2 Mathematical Viewpoint

Here, we review the earliest mathematical models of arteries, called WKs. We examine
how they were improved over time and the reasoning behind including the new elements
added to them. Then, we cover TL models and see how they make the study of wave
reflection possible. Finally, we review existing devices that are used to provide data for
brain models, discussing the limitations and advantages of each. In parallel, we highlight
existing research gaps in the estimation of cerebral arterial health.

2.2.1 Windkessel Models

Windkessel Models (WKs) are the simplest models used to represent the arterial system
by means of electrical elements. TPR can be represented as a resistor, R, and compliance
can be represented as a capacitor, C. These sets of arterial models get their name from
the well-known WK effect, as large arteries act as elastic reservoirs.

• Two-element Windkessel Models (WK2s): Fig. 2.4 shows a WK2 model. R and C

represent the total peripheral resistance and total arterial compliance, respectively.
The governing equation for the model in Fig. 2.4 is:

C
d

dt
P (t) +

1

R
P (t) = F (t). (2.5)

In which F is blood flow. During each cardiac cycle, after the aortic valve closes
and before ventricular ejection starts (Fig. 2.1), the inflow of blood is zero. Thus,

RC

Figure 2.4: Schematic diagram of a Two-element Windkessel Model of the circulatory
system
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for any time during diastole

P (t) = P1e
− (t−t1)

RC . (2.6)

Where (t1, P1) is a reference point in the pressure signal during the diastole phase.
Equation (2.6) implies that the pressure decreases exponentially during diastole
with a time constant, τ , equal to R × C. Therefore, one way of estimating C

is to fit the pressure-time signal with an exponential function and find the time
constant of decay. Then, TPR is estimated as the mean blood pressure (MBP)
over mean flow, and C can be extracted from τ = RC. This method of estimating
compliance using a WK2 and exponential fitting is called the decay time method.

Another method for estimating C is to apply an integration over (2.5) during
diastole [31].

C =
1

R (P1 − P2)

∫ t2

t1

P (t)dt, (2.7)

where (t1, P1) and (t2, P2) are two reference points on the diastolic pressure curve.
The method is known as the area method.

It has been shown that the WK2 cannot model the high-frequency (>5Hz) fea-
tures of the pressure wave in the arterial tree. It also cannot describe the model
parameters during systole [12]. The input impedance for the WK2 (Fig. 2.4) is

Zin =
R

1 + jωRC
, (2.8)

and the modulus and phase of input impedance for the model approach zero and
−90°, respectively at high frequencies. For measured pressure wave values, how-
ever, the input impedance reaches a constant value and the phase hovers around
zero at high frequencies [12]. Therefore, the WK2 is only a good predictor of the
gross features of the pressure waveform.

The pulse pressure method uses the low-frequency (LF) accuracy of the WK2 to
get a better estimate of compliance. Pulse pressure is defined as the difference
between the systolic and diastolic pressures. The method adjusts C in the model
to get the best match between the predicted and measured pulse pressures at a
certain point in the arterial tree [31].

• Three-element Windkessel Models (WK3s): The shortcomings of WK2 at high
frequencies and in describing the pressure-flow relationship in systole led to the
introduction of WK3 (Fig. 2.5). Frequency analysis of pressure and flow mea-
surements showed that, at higher frequencies, the impedance module reaches the
characteristic impedance of the proximal arteries (i.e., arteries closer to the heart).
The third element in the new model, Zc, is this characteristic impedance. However,
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large arteries are usually modelled as a lossless TL and therefore, Zc is replaced
by a resistor [12, 32].

The most accepted method of estimating compliance with WK3 is the fit method
which minimizes the error between the measured pressure (or flow) and modelled
output by adjusting the three unknown parameters (in some studies R is set as
the MBP over mean flow and is held constant during the fitting procedure) [32].

The input impedance for WK3 is:

Zin =
R+ Zc + jωRZcC

1 + jωRC
. (2.9)

On the other hand, the characteristic impedance is defined as the ratio of pressure
to flow when there is no reflected wave. Hence, some papers estimate the charac-
teristic impedance as the average of 6 to 8 instantaneous PP amplitudes to flow
during the earliest ejection phase, when there are no reflected waves [33]. That
being said, the characteristic impedance is most commonly estimated with high-
frequency components of input impedance (e.g., averaging the input impedance
module between 3 and 10Hz [34]). Theoretically, wave reflection causes input
impedance to oscillate around the characteristic value [35, 36]. If Zc and R are
estimated by the mentioned methods, C is the only unknown parameter in (2.9)
and is usually determined at the fundamental frequency (heart rate). The method
is called the low-frequency impedance method [32, 36].
The governing equation for WK3 is

P (t) +RC
d

dt
P (t) = (R+ Zc)F (t) + ZcRC

d

dt
F (t). (2.10)

Integrating over (2.10), C can be found as

C =

∫ t2
t1

P (t)dt− (R+ Zc)
∫ t2
t1

F (t)dt

R(P (t1)− P (t2))−RZc(F (t1)− F (t2))
. (2.11)

The integral method was proposed by [33] and applied during the ejection period
to account for the interaction of Zc and C, because in the diastolic phase F (t) = 0.

R

Zc

C

Figure 2.5: Schematic diagram of a Three-element Windkessel Model of the circula-
tory system
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Figure 2.6: Schematic diagram of a Four-element Windkessel Model of the circulatory
system

• Four-element Windkessel Models (WK4s): Although WK3 results show a good fit
to pressure and flow data, it has been reported in the literature that the characteris-
tic impedance is underestimated and the total arterial compliance is overestimated
by this model [32, 37]. In order to overcome this issue, a forth element was added
to the model, as shown in Fig. 2.6. The inductor in the new model represents
the total arterial inertance. It helps in direct current (DC) interpretation of input
impedance, Zdc = R (Zc was only added to improve the model performance at
high frequencies). For this method, the measured pressure (or flow) is used as
the input and parameters are fit to minimize the output flow (or pressure) error.
WK4 has provided more accurate estimates of compliance than previous methods
[12, 37].

• Note on Lumped Models: Note that a lumped element electrical model, such as a
Windkessel model model, is valid when the circuit length is much smaller than the
circuit’s operating wavelength. Therefore, Windkessel model models assume an
infinite velocity for blood flow to increase the operating wavelength and maintain
the validity of the model. In addition, when we represent compliance with a fixed
capacitor, then according to (2.1) we imply linearity between volume and pressure.
However, the assumption of a linear pressure-volume relationship does not exactly
hold in practice, and methods have also been developed for a pressure-dependent
calculation of compliance. An exponential relationship of V = aebP+c is a common
choice for this purpose, which can be applied to WK models [38].

2.2.2 Transmission Line Models

One of the main assumptions in the WK models is an infinite PWV, which does not
allow for the study of wave propagation and wave reflection. TL models, on the other
hand, consist of tubes, representing wave propagation in large conduit arteries, and
loads, representing wave reflection sites of distal arterial beds. Figure 2.7 shows a single
TL model, where R, L, G and C are the distributed resistance, inductance, conductance
and capacitance of the line, respectively, all defined per unit length. In most cases, R
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Figure 2.7: Transmission Line models. (A) Electrical equivalent (per unit length) of
an arterial segment. (B) Transmission segment where ZL, Z0, l and γ represent load
impedance, characteristic impedance, length and propagation constant, respectively;
and Pf0

and Pr0 are the forward and backward travelling pressure waves at the source,
respectively.

and G are set to zero, simplifying calculations and assuming a lossless TL for the arterial
tree [34, 39]. Nevertheless, knowing the structural properties of the arterial wall, one
can calculate these parameters.

R =
8µ

πr4
, L =

9ρ

4πr2
, C =

3πr3

2Eh
, (2.12)

in which µ is the blood velocity, r is the internal radius of the arterial segment, ρ is
the blood density, E is Young’s modulus of the arterial wall and h is wall thickness. A
detailed model of the human arterial tree with anatomical data for 128 discrete tubes
was presented by [40], which is used as a mathematical reference for validating model
performance. The loads, ZL, are usually a WK3 but other types of loads can also be
found in the literature [39]. Using the wave equations [41] to represent voltage and
current in an electrical TL, characteristic impedance (Z0), propagation constant (γ),
voltage (P ) and current (Q) can be calculated as:

Z0 =
√

(R+ jωL) / (G+ jωC), (2.13)

γ =
√

(R+ jωL) · (G+ jωC), (2.14)

P (x) = Pf0e
−γx + Pr0e

γx, (2.15)

Q(x) =
1

Z0

(
Pf0e

−γx − Pr0e
γx
)
. (2.16)

In which Pf0 and Pr0 are forward and reflected pressure waves, respectively (Fig. 2.7).
The input impedance, Zin, unlike the characteristic impedance, accounts for the reflected
waves. Zin is measured at the source and is expressed as:

Zin = Z0
ZL + Z0 tanh(γl0)

Z0 + ZL tanh(γl0)
. (2.17)
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The reflected wave caused by the impedance mismatch, ZL 6= Z0, in the model, can be
characterized using a reflection coefficient. The coefficient is defined as the amplitude of
the reflected pressure wave normalized to that of the incident wave. Thus, at the source
end, the reflection coefficient is calculated as:

Γin =
Zin − Z0

Zin + Z0
. (2.18)

Using the reflection coefficient, the forward voltage wave can be linked to the total
voltage at the source, P (x = 0), as

Pf0 =
P (0)

1 + Γin
, (2.19)

and the reflected wave is
Pr0 = Pf0Γin. (2.20)

The parameters of the TL model are found by fitting the measured and estimated
pressure/flow values, given flow/pressure as the input. However, all the parameters
should be within their physiological boundaries (e.g., the characteristic impedance must
be lower than the total peripheral resistance). Using common local search methods
like steepest descend or Levenberg-Marquardt without an initial guess near the global
optimum rarely works; therefore, multiple initial guesses are usually applied [39].

Transmission Line models account for the wave reflection phenomenon from the distal
arteries; however, (2.15) also has the assumption that the source impedance matches the
characteristic one (i.e., there are no reflected waves from the source). On the other hand,
setting R = 0 (good approximation for the proximal arteries according to (2.12)) and
G = 0, implies a lossless TL i.e., γ is purely imaginary and represents the propagating
time delay throughout the tube [39].

2.2.3 Applications

The simplicity and accuracy of using electrical models to describe the cardiovascular sys-
tem have made them the standard approach for non-invasive analysis. Here we mention
some recent applications of these models:

Oscillometric blood pressure meters are non-invasive, commercially available devices
that calculate pressure with mathematical algorithms applied to pressure sensor mea-
surements. Although these devices return results similar to those of conventional meth-
ods for patients with normal blood pressure, for hyper- and hypo-tensive patients, there
is a big discrepancy. Use of a WK2 model for calibration has been shown to greatly
improve for the accuracy of the results [42, 43].

Pulse Wave Velocity and pulse transit time are important indicators of arterial com-
pliance and a useful cardiovascular clinical markers and can be studied using TL models
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[44, 45]. Ageing is associated with an increase in central PWV; however, there is debate
over whether impedance matching of central and peripheral arteries occurs and whether
reflection sites change with age. Clarification of this issue involves the study of wave
propagation using TL models [46, 47].

The pulmonary system which carries blood from the right ventricle to the lungs and
back, has 8 to 10 times fewer peripheral vessels than the systemic arterial system. Thus,
its high compliance is distributed more evenly over the system. Studies of pressure and
flow waves using WK show that the loss of arterial pulmonary compliance in hypertensive
patients heightens the risk of myocardial infarction and stroke [48, 49].

2.2.4 Cerebral Arterial Compliance

Here, we review non-invasive approaches to estimating cerebral arterial compliance or
determining similar cerebrovascular health indices defined by the type of device used for
the estimation.

• Transcranial Doppler Ultrasound: TCD ultrasonography is a non-invasive portable
technique with high temporal resolution, which estimates blood flow velocity from
accessible cerebral arteries, mainly the middle cerebral artery (MCA) [8]. The ba-
sic principle is that when ultrasonic waves of known frequency are reflected back
from moving red blood cells, their new frequency, called the Doppler shift fre-
quency, contains information about the blood flow velocity. The equation relating
the parameters in the Doppler method is:

Reflector speed =
(Doppler shift)× (propagation speed)

2× (incident frequency)× cos(θ)
. (2.21)

Where θ is the angle of the emitted wave in respect to the direction of the blood
vessel [9].

TCD indices such as AITCD and PITCD are commonly used to assess cerebrovas-
cular health [50–53]. The AI quantifies the augmentation of the reflected wave on
the incident wave and is defined as

AITCD =
Vrefl − Vdia
Vsys − Vdia

. (2.22)

Where Vrefl, Vsys and Vdia are the blood flow velocities measured at peak reflec-
tion, peak systole and peak diastole, respectively. PITCD, however, measures the
pulsatility of the blood flow velocity as [54]

PITCD =
Vmax − Vmin

V
. (2.23)
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Where Vmax, Vmin and V are the maximum, minimum and mean blood flow ve-
locities, respectively. Conventionally, PI is assumed to describe the CVR distal to
the point of measurement [55–57]. However, a more comprehensive study in 2012
showed that in cases of ICP plateau waves, i.e. an abrupt elevation in ICP, PI
increases where CVR drops as an auto-regulatory vasodilation mechanism kicks in
[58]. This happens because the cerebral auto-regulation system tries to keep the
cerebral blood flow (CBF) constant, which is defined in (2.3) as the ratio of CPP
(see (2.2)) to CVR. Therefore, when ICP elevates, CPP drops, and based on (2.3),
in order to keep the blood flow constant, CVR has to decrease, which will happen
with vasodilation. While PI and CVR change in opposite directions with elevated
ICP, they both tend to increase in the case of hypercapnia [58].

The parameters AITCD and PITCD have been shown to have significant correlations
with health indicators (see Tables 2.1 and 2.2 for a list of literature reporting
Pearson’s correlation coefficients for PITCD and AITCD) such as age [50, 53, 59–61],
arterial stiffness (or PWV) [51, 52, 59, 62, 63], cerebral white matter diseases and
abnormalities [59, 64, 65], cognitive performance and dementia [57, 60, 61, 66,
67], SVD [65, 67] and CRF [68]. Based on the values reported in the literature,
although AITCD has a stronger correlation with age than PITCD and a similar level
of correlation with stiffness (as seen Tables 2.1 and 2.2), the pulsatility index is
more frequently reported due to its easy calculation. Nonetheless, there are cases
reported with lower correlations for AITCD [63] and higher correlations for PITCD
[51].

A method of directly estimating cerebral arterial compliance has been proposed
in the literature [72, 73]. The method transforms measured blood velocity into
blood volume and uses arterial blood pressure (P ) to apply (2.1) . The process
is explained here. Assuming a sampling interval of ∆t for the device, over each
cardiac cycle, cerebral arterial blood volume (V) can be estimated by the difference
in arterial inflow and venous outflow:

V(n) ≈
∑

i∈cardiac cycle
[V (i) · S − Vv(i) · Sv]∆t. (2.24)

Where V is cerebral arterial blood flow velocity with an arterial cross-sectional area
of S, and Vv is the cerebral venous blood flow velocity with a venous cross-sectional
area of Sv. Note that we do not use any subscripts for the arterial blood because we
commonly use the term vessel to refer to the arteries and the measurements from
different devices are often obtained from the arteries. It is also assumed that the
venous outflow has low pulsatility over the cardiac cycle and can be approximated
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Correlating factor
reference Correlation Age range (population size)

/mean age in years
Age [52] 0.25 19–81 (334)/ 50.93
HR [52] -0.22 "
cf-PWV [52] 0.12 "
ba-PWV [52] 0.23 "
Age [62] 0.32 NA (245)/ 57.7
ba-PWV [62] 0.42 "
Age [51] 0.33 22–86 (165)/ 56.70
cf-PWV [51] 0.45 "
Age [61] 0.27 50–70 (160)/ 59.28
Age [69] 0.36 47–90 (148)/ 66.3
Age [70] 0.05 9–12 (59)/ 10.14
Age [60] 0.32 22–80 (83)/ 49.15
cf-PWV [60] 0.46 "
Pressure AI [60] 0.26 "
CRF [68] 0.41 NA (27)/ 67.0
NA: Data not reported
": as above

Table 2.1: Reported PITCD correlations with arterial health factors

Correlating factor
reference Correlation Age range (population size)

/mean age in years
Age [71]1 0.88 NA (25)/ 40.85
Age [59] 0.54 20–84 (286)/ 54
cf-PWV [59] 0.35 "
Age [53] 0.65 20–72 (56)/ 48.2
Pressure AI [53] 0.91 "
NA: Data not reported
": as above
1 A different definition of AI is used

Table 2.2: Reported AITCD correlations with arterial health factors

as the mean arterial inflow (V ); i.e.,

Vv(n) · Sv ≈ V · S. (2.25)

Using (2.25) and reported values of S for MCA, the V is calculated from (2.24).
Then, the TCD-based cerebral arterial compliance, CTCD, is estimated as

CTCD =
Vsys − Vdia
Psys − Pdia

. (2.26)

Where superscripts sys and dia indicate the peak systolic and diastolic measure-
ments, respectively. The mathematical model that estimates the blood volume for
TCD measurements (2.24), assumes that the cerebrovascular diameter does not
change, which is inconsistent with the definition of compliance for these vessels.
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Measurements by TCD is known to be highly operator-dependent and requires
considerable skill and experience. Moreover, the temporal bone thickness prevents
TCD measurements of MCA in approximately 20% of patients [7–9].

• Magnetic Resonance Imaging: The MRI technique captures dynamic motions
and is a non-invasive method of imaging blood and CSF flows in the cranium.
The most commonly reported MRI index is the PIMRI, which is calculated from
blood flow waveforms. Cerebral blood flow is usually measured via MRI phase
contrast (PC) sequences and provides changes in blood flow over a single cardiac
cycle. PIMRI is defined as [74]:

PIMRI =
Qsys −Qdia

Q
, (2.27)

where Q is the cerebral arterial blood flow measured by MRI. PIMRI is known to
correlate with age [75] and cerebral SVD [74, 76].

A new approach has been recently proposed that uses arterial spin labelling (ASL),
which is a non-ionizing MRI technique for measuring blood flow/volume based
on tagged (labelled) and control (unlabelled) images. In this method, arterial
blood water is magnetically tagged with a radio frequency pulse by saturating or
inverting the photons before it enters the area of interest. Subtracting tagged
images from controls images removes statistical signals, and the remaining signal
contains information about the cerebral blood volume [77]. After extracting the
arterial blood volume, [8] used the following equation to calculate compliance
normalised to arterial blood volume in diastole. We denote this index as CMRI-ASL;
however, it does not have the same units as compliance.

CMRI-ASL =
Vsys − Vdia

Vdia(Psys − Pdia)
× 100. (2.28)

Since the labelled inflow blood is only 0.5% to 1.5% of the total blood reaching the
tissue, ASL has a low signal-to-noise ratio (SNR). Also, ASL follows a subtraction
technique, which means it is very sensitive to subject movements. On the other
hand, the inherently low temporal resolution of ASL (repetition time of 1.4s in [8];
i.e., tag-control image pairs are acquired every 2.8s) combined with the low SNR
results in low contrast-to-noise ratio images [77].

Arterial compliance can also be estimated using MRI PC images [78]. Blood flow
velocity and vascular cross-sectional area are calculated by manually placing a
region of interest on PC sequences. Over a single cardiac cycle, the interception
points of the horizontal mean velocity line and the flow velocity waveform mark the
beginning and end of the systole (see Fig. 2.8). Then, the mean systolic velocity
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Figure 2.8: MRI PC flow velocity waveform (simulated) with mean velocity and mean
systolic velocities

which is the mean of the flow velocity waveform during the systole, is multiplied by
the duration of the systole, ∆t, to give an estimation of the arterial pulse volume.
The arterial pulse volume is then divided by PP to calculate compliance using
(2.1). A similar approach was taken in [79], where time resolved 3D MRI flow
pulsations were compared with 2D PC sequences.

• Diffuse Correlation Spectroscopy (DCS): A diffuse correlation spectroscope is an
inexpensive, portable device that provides a measure of cerebral blood flow by
illuminating the brain surface with NiR light. Diffuse Correlation Spectroscopy
(DCS) uses long coherence length continuous wave NiR lasers to provide a con-
stant phase both spatially and temporally. The blood flow information is carried
in the electric field of the diffused light, E(~r, t) (where r denotes position and
t is time), and can be extracted with an autocorrelation function as GE(~r, τ) =

〈E(~r, t)E∗(~r, t + τ)〉 where 〈·〉 denotes the ensemble average. However, in an ex-
periment, GE is derived from the normalized intensity autocorrelation, GI(~r, τ) =

〈I(~r, t)I(~r, t+τ)〉/〈I(~r, 0)〉2 (I is the measured intensity), using the Siegert relation
as

GI(~r, t) = 1 + β
|GE(~r, t)|2

〈I(~r, t)〉2
, (2.29)

where β is a numerical factor depending on the detector geometry. GE satisfies a
diffusion equation modelled by Brownian motion in a semi-infinite, homogeneous
medium. GE is then analytically solved to provide a blood flow index [80]. Based



Background 22

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5
·10−2

Time(s)

In
te

ns
ity

Figure 2.9: Averaged NiRS signals for selected channels of a single subject.

on the semi-infinite, homogeneous assumption used in solving the diffusion equa-
tion, the DCS index reflects not only blood flow from the skeletal muscle but also
that from skin and fat. Calculation of the blood flow index or relative blood flow
with DCS requires knowledge of tissue properties like absorption coefficient, re-
duced scattering coefficient and Brownian diffusion coefficient, and as DCS requires
a continuous-wave light source, it is incapable of measuring those parameters. Al-
though constant values from other studies are usually applied, hybrid use of DCS
with NiRS has also been proposed to overcome this issue [81, 82]. DCS is known
to be more sensitive to blood flow in arterioles than the blood flow in arteries. The
reason is that the infrared light is highly absorbed by the arteries so the blood flow
index calculated from the autocorrelation function becomes less precise [83].

An interesting approach to estimating cerebral arteriole compliance was taken in
[83]. Assuming a WK2 for the arteriole system, they calculated the resistance and
compliance by comparing the amplitude and phase of the input impedance using
(2.8); i.e., ]Zin = arctan(−ωτ), to those of measured data based on pressure and
flow.

• Near-infrared Spectroscopy:

NiRS is an emerging technique in the field of brain study. Using the NiR portion of the
electromagnetic spectrum (690nm to 900nm), NiRS relies on scattering and reflection of
NiR light that reaches several centimetres into the brain. The emitted light is scattered
and a very small portion (approximately one out of 109 photons) finds its way to light
detectors placed 2–5cm away from the source [84]. Over this spectrum oxygenated and
de-oxygenated haemoglobins are the main absorbers of light and some NiR light is able
to pass through several centimetres of tissue before being reflected [85]. Using at least
two wavelengths one can separate these elements as indicators of brain activation [84].
NiRS has several advantages compared to other methods of brain study. Its low cost,
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Reference/
publication year

Correlation
with Age

Correlation
with CRF Sample size Age range/ mean (years)

[10]/2014 -0.39 0.42 53 55–87/69.53
[86]/2017 -0.43 0.32 48 18–75/47.8

[90]/2017 -0.46 NA 48 18–75/47.8
same as [86]

[91]/2019 -0.60 NA 93 18–87/58.8
combination of [10] & [86]

[92]/2019 0.61 NA 30 28–39 /33 (weeks)

[93]/2019 -0.41 NA 48 18–78/NA
same as [86]

NA: Not reported

Table 2.3: Reported PReFx correlations with age and CRF. Note that despite using
the same dataset, the differences in correlation coefficients reported in [86], [90] and
[93] are not clear. In [90], it is stated that the highest and lowest calculated PReFx
values are 0.237 and 0.021, whereas the scatter plot of PReFx against age in [86] shows

PReFx values as high as ≈0.28.

portability and high temporal resolution make it a worthy alternative to the well-known
functional magnetic resonance imaging (fMRI) technique. NiRS also offers higher spatial
resolution than electroencephalography (EEG), thereby allowing regional studies. NiRS
has gained popularity in the fields of cerebrovascular disease, cerebral arterial pulsation,
functional connectivity, cerebrovascular reactivity, brain computer interfacing and event-
related fast optical signals [86–89].

To the best of our knowledge, only one research group has addressed the issue of
estimating cerebral compliance with NiRS technology, [94]. Changes in blood volume
over each cardiac cycle leave a periodic shape in the measured NiRS intensity signal,
referred to as the arterial pulsation (AP) signal. A sample of averaged NiRS signal from
different channels of a single subject showing the arterial pulsation (AP) signal is pre-
sented in Fig. 2.9. The NiRS signal has always been analysed to extract haemodynamic
responses; i.e., changes in blood flow in relation to neural activation, with the AP signal
treated as an unwanted component that needs to be filtered out. In [10], the authors
proposed using the AP signal to estimate brain health factors. To this end, it has been
assumed that during diastole, the pressure and, therefore, volume decays exponentially
and, in cases of high arterial compliance, reflected waves are observed earlier, leaving
deformation in the decaying portion of the signal. Therefore, the method uses this de-
formation in the AP signal that occurs between the systolic and diastolic peaks as an
index of vascular compliance called pulse relaxation function (PReFx). To calculate the
PReFx, first, an AP signal is calculated by dividing a channel by its mean and then
bandpass filtering the signal (0.5-5.0Hz). The signal then rotated around the x-axis to
represent light absorption (see Fig. 2.10) where two diastolic peaks and a systolic peak
are visible. In Fig. 2.10 the time is assumed to start at the electrocardiography (ECG)
R peak occurrence. Then, a rectangle is imagined with the systolic peak and second
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Figure 2.10: PReFx calculation and range for different age groups

diastolic peak at its diagonals with an area of B. Next, the area enclosed by the NiRS
signal and the left and lower sides of the rectangle is calculated as A. Finally,

PReFx =
A

B
− 0.5. (2.30)

PReFx has been reported to correlate with age and CRF. See Table 2.3 for a list of re-
ported correlation coefficients. PReFx was first labelled as arterial compliance but later
was named pulse relaxation function due to the belief that it reflects “a combination
of arterial elasticity and peripheral resistance” [90]-page 200. Although it is generally
shown that PReFx correlates negatively with age [10, 86, 90], a strong positive corre-
lation was reported in [92] in a study on preterm infants, where higher PReFx values
are thought to represent higher cerebrovascular development. This, is consistent with
studies on central arteries stating that arterial stiffness decreases sharply with age in the
first decade of life and increases thereafter [95]. As mentioned in the literature [90, 92]
and illustrated in Fig. 2.10, younger adults have the highest PReFx values, whereas older
adults have positive and low PReFx values and infants show negative PReFx values as
their systolic-to-diastolic curve lays under the straight line of PReFx=0.

2.3 Health Implications of Vascular Stiffening

Central and cerebral arteries become stiffer with age, causing structural and functional
changes in the arterial wall that lead to SVD [6, 96]. These changes contribute to
increased PP and hypertension among other effects [97]. In the brain, cerebral SVD
reduces CBF and vasodilator reserve, reduces PO2 and O2 transport, causes lacunes
(3-15mm CSF-filled cavities in the white matter), microinfarcts (microscopic lesions of
cellular death or tissue necrosis), microbleeds, white matter abnormalities and brain
atrophy. These can lead to cognitive impairment such as dementia and Alzheimer’s
disease, and non-cognitive impairment such as loss of balance and metabolic dysfunction
[28].
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Although these disadvantageous changes seem to be an unavoidable outcome of ageing,
it has been shown that physical activity can slow age-related progression of arterial
stiffening [98, 99]. In a longitudinal study of 5196 participants it was concluded that
moderate-to-vigorous activities are associated with slower progression of aortic stiffness
(measured via aortic-femoral PWV) over time and that sports are particularly effective
in slowing arterial ageing [99]. Similar results are reported for the brain, showing that
physical activity improves cerebrovascular and cognitive functioning [100]. Nonetheless,
physical activity does not show a long-lasting effect on arterial compliance. Studying the
effects of a single 30-minute bout of cycling exercise, it was found that the overall arterial
compliance was elevated at 30 minutes post-exercise and then declined to baseline 60
minutes after the exercise [101]. This emphasizes the importance of developing easy-
to-use devices for routine measurement of cerebral arterial health that help the ageing
population track and maintain their brain health and facilitate early intervention for
related diseases.



Chapter 3

A Mathematical Model of Wave
Reflection

3.1 Introduction

Vascular ageing is a prominent factor in major cardiovascular events including stroke,
heart failure and coronary artery disease [102]. Vascular health is studied through
pulsatile arterial haemodynamics and several key indicators of vascular ageing have been
identified in pulsatile pressure readings such as pulse wave velocity (PWV), reflection
time (Trefl), and augmentation index (AI) [102, 103].

In particular, reflected waves are frequently studied to infer cardiovascular properties
[103]. Reflected waves occur when forward-travelling pressure waves hit an effective
reflection site (which, in practice, is a superimposition of several sites) and are reflected
back towards their source (in this case the heart). In elastic arteries appropriately
timed reflected waves help maintain pressure during diastole, however, they can have
an ill-effect as age progresses and PWV increases. With increased PWV, which more
than doubles in the aorta between the ages of 17 and 70 [104], reflected waves advance
into the systole and add to the systolic pressure [105]. This increases the peak-systolic,
end-diastolic and mean arterial pressures [106] and contributes to stress on the vessels
[103].

The concept of reflection time, pulse transit time or pulse return time has been defined
as the timing of the nflection point on the central pressure waveform [46]. This is a
visible curvature in the waveform caused by a forward-travelling pressure waveform from
the left ventricle combining with a reflected wave. Similarly, on more distal pressure
waveforms, the pulse transit time is defined as the time difference between the first
(systolic) and second (reflected) peaks [107]. Both definitions aim to capture the same
phenomenon; the latter measures the peak-to-peak difference of the forward and reflected
waves, whereas the former measures the foot-to-foot time differences. Here, we will call

26
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this time interval as Trefl, which is commonly formulated as:

Trefl =
2d0

PWV
(3.1)

where d0 is the distance from the measurement site to the reflection site, multiplied
by two to account for a round trip. The equation simply calculates the travel time by
dividing distance by travel speed. This equation is commonly used to assess vascular
compliance or to estimate d0 [2, 19, 46, 106, 108–114] and here will be referred to as the
existing Trefl model. It should be noted that (3.1) holds only when a resistive load is
assumed; i.e., a real load (in a mathematical sense) impedance [46, 114, 115]. However, a
purely resistive load can not sufficiently model distal arteries [115]. In elderly populations
(>65 years), Trefl reaches a plateau state whereas, PWV still increases and the first
conclusion from (3.1) is increased d0. This is referred to as the apparent distal shift
of the reflection site after age of 65 years [2, 106] which contradicts with the accepted
opinion [116]. Debate about changes in d0 has been the topic of several publications
[2, 46, 106, 115]. In this chapter, we will examine the controversy surrounding moving
reflection sites and other observations of Trefl and AI values by understanding these
indices from a mathematical viewpoint using a model of the vascular tree.

As mentioned in Chapter 2, a number of models have already been developed to study
the vascular system. Two-element Windkessel Models (WK2s) in the form of an RC

circuit were the first generation [103]. Later, a third element was added in series to
model the characteristic impedance of the arterial tube in a three-element Windkessel
model (WK3) [12, 36, 117]. The WKs, although popular and efficient for parameter
estimation due to their simplicity, are unable to reflect the finite PWV and thus the
wave propagation phenomenon and the presence of reflected waves in the arterial system.
Thereby, TL equations and models have been adopted to understand changes in flow
and pressure at the pace that they advance in the arteries [39, 117].

In Section 3.2, we assume a WK3 at the load and use the TL theory to formulate Trefl

and AI in terms of the model parameters. Then, in Section 3.3 we use values reported
in the literature for each parameter and compare measured Trefl and AI values to the
model outputs. After validating our models of Trefl and AI, we use them to gain insights
into commonly observed measurements.

3.2 Method

In this section we will first briefly review the TL theory then define Trefl and AI in terms
of the model parameters. Finally, we will show how the model performs in estimating
these parameters using various datasets reported in the literature.
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3.2.1 Model Derivation

The approach is based on a uniform TL model of the vascular system used in the litera-
ture [39, 117] and introduced in Chapter 2 (see Fig. 3.1). The heart is located at x = −d
with blood pressure and flow of PH and QH, respectively. The characteristic impedance
of the TL is Z0 and the reflection site has blood pressure and flow of PL and QL, re-
spectively, terminated by a WK3 with its third element, Z0, matching the characteristic
impedance of the line. The resistance and compliance are R and C, respectively, which
resemble the properties of the vascular system beyond the reflection site. It should be
mentioned that a tapered model [118] can be used instead of a uniform model; however,
given a fixed measurement distance, the two models can be considered equivalent given
appropriate optimization of the parameters [119]. Note that the TL model accounts
only for the pulsatile components of the pressure and flow.

Pressure as a function of time and distance can be decomposed into forward and
backward travelling elements, i.e.,

P (x) = Pf(x) + Pb(x). (3.2)

In which Pf(x) and Pb(x) are the forward (incident) and backward (reflected) travelling
waveforms. These waveforms are in the form of

Pf(x) = pfe
−γx, Pb(x) = pbe

γx, (3.3)

where pf and pb generally have complex quantities and are calculated using the boundary
conditions. Variables γ and x are the propagation constant and distance from the load,
respectively. Note that (3.2) and (3.3) are phasor domain solutions to the TL equations
with an assumption of steady-state sinusoidal pressure and flow input waveforms. For a
lossless case, the time domain solution will be

p(x, t) = |pf| cos(ωt− βx+ φf) + |pb| cos(ωt+ βx+ φb), (3.4)

where |pf| ejφf and |pb| ejφb are the amplitude and phase of pf and pb in (3.3), respectively,
and β is called the phase contrast, which is equal to the imaginary part of γ. The
reflection coefficient is defined as the ratio of the reflected pressure wave to the incident
pressure wave, i.e.,

Γ(x) =
Pb(x)

Pf(x)
=

pbe
jβx

pfe−jβx
=

pb
pf
ej2βx. (3.5)
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Figure 3.1: Transmission Line model of the vascular system

3.2.1.1 Reflection Time

In order to formulate the reflection time using TL theory, let Φ be the phase difference
between the forward and reflected waves at x = −d0 along the line, which will be equal
to the absolute value of the phase of the reflection coefficient at the same location,
θΓ(x = −d0), i.e,

Φ = |θΓ(−d0)| = |θΓ(0)− 2βd0| . (3.6)

To calculate θΓ(0), we should first quantify the reflection coefficient at the load, x = 0.
We have

Γ(0) =
ZL − Z0

ZL + Z0
, (3.7)

where ZL = P (0)/Q(0) (see Fig. 3.1). Also, with a WK3 at the load (see Fig.3.1), we
have

ZL = Z0 +
R

1 + jωRC
, (3.8)

inserting into (3.7) gives

Γ(0) =
R

R+ 2Z0 + 2jωZ0RC
, (3.9)

with its phase equal to
θΓ(0) = − tan−1 2ωZ0RC

R+ 2Z0
. (3.10)

Using the first order Taylor series expansion on (3.10) and inserting it into (3.6), we get

Φ ≈ 2ωZ0RC

R+ 2Z0
+ 2βd0. (3.11)

The phase constant (β) is related to the PWV (or propagation velocity) as β = ω/PWV.
Also, note that we are interested in measuring the time difference between the forward
and reflected waves, Trefl, which is the phase difference (Φ), divided by the angular
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velocity (ω). Inserting these into (3.11) we have

Trefl ≈
2Z0RC

R+ 2Z0︸ ︷︷ ︸
∆tload

+
2d0

PWV︸ ︷︷ ︸
∆tline

, (3.12)

which breaks the travel time of the reflected wave into two elements. The delay caused
by the line itself is ∆tline, which is influenced by the speed on the line and the length
of the line. The delay at the load is ∆tload, which is forced by the capacitive properties
of the load. Thus, the wave reflection is more than a simple “round trip” as there is a
delay in between.

It should be noted that the reflection site (Fig. 3.1) in the proposed model is a symbolic
reflection location which represents reflections from various reflection and re-reflection
sites [120]. Therefore, d0, the distance between the measurement and reflection sites,
does not indicate a specific location in the arterial system with reference to the mea-
surement site and, in fact, it can have a value larger than what one would expect based
on the vascular structure. The reason is there are re-reflection sites that are closer to
the heart than the measurement point and reflect back the already reflected waves [120].
These waves with much larger d0 values also add to the measured pressure contributing
to the reflected pressure waveform.

3.2.1.2 Augmentation Index

The augmentation index (AI) is defined as:

AI = Prefl − Pdia
Psys − Pdia

, (3.13)

in which Prefl, Pdia and Psys are the peak reflection, end-diastolic and peak systolic blood
pressures, respectively [121]. A transcranial Doppler augmentation index was defined
similarly in (2.22). This definition is commonly used to report AI for arteries distal
to the heart and features two distinctive peaks in the waveform. For proximal arteries
where reflected and incident waves often overlap, another definition is used.

AI* =
Prefl − Psys
Pmax − Pdia

, (3.14)

where Pmax = max {Prefl, Psys} [108, 112, 122–124]. Augmentation Index, Alternative
Definition (AI*) can be expressed in terms of AI as:

AI* =


1− 1/AI Prefl > Psys (i.e., Pmax = Prefl)

0 Prefl = Psys

AI− 1 Prefl < Psys (i.e., Pmax = Psys)

(3.15)
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It is known that the reflected waves make a negligible contribution during the period
between end-diastole and peak-systole because of the lossy line properties of the arterial
tree. Therefore, in the absence of the reflected wave, we can assume:

Psys ≈ MAP + |pf| . (3.16)

In practice, mean arterial pressure (MAP) is closer to the end-diastole than the peak
systole, because of the differences in systolic and diastolic durations. For instance the
end-diastole, MAP and peak systole are reported in [125] as 77.5, 93.0 and 124.1mmHg,
respectively. This shows that the difference between the systolic peak pressure and
the MAP is twice as great as that of the end-diastolic peak pressure. Here, for the
practicality of the formulation we use the same concept; i.e.,

Pdia ≈ MAP− 1

2
|pf| . (3.17)

Now, to quantify the reflected peak value, we should be mindful of the phase difference
between the forward and backward travelling waves. Based on the approach taken in
Section 3.2.1.1, when the reflected wave reaches its maximum value, the incident wave
decreases its amplitude by a factor of cosΦ or cos (ωTrefl). This means that:

Prefl ≈ MAP + |pf| cos (ωTrefl) + |pb| . (3.18)

In which the second term is the amplitude of the forward-travelling wave when the
reflected peak occurs and the third term is the maximum value of the backward-travelling
wave at the same time. Inserting (3.16), (3.17) and (3.18) into (3.13), our formula of AI
becomes:

AI ≈ 2

3

(
cos (ωTrefl) + |Γ(0)|+

1

2

)
, (3.19)

The AI* can be calculated from (3.19) using (3.15). Also, note that in this section we
do not assume sinusoidal waveforms except to define Trefl in (3.18).

3.3 Model Validation

In this study, we compare values reported in the literature with values derived from our
models. It is important to note that we do not “fit” our models to the data. All model
parameters are taken from the literature. Among the input variables used to the model
the parameters, R and C are load properties which are located far from the heart and
compliant vessels regardless of the measurement site. Therefore, location-independent
values can be selected for these parameters. However, the characteristic impedance
(Z0) and PWV are both line properties, which can change as the measurement location
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becomes more distal from the heart. Here, we will ignore the PWV increase from the
aorta to the radial artery (the farthest artery we will examine) as this has been reported
to be small [126] and will not affect the model results. Yet, we will try to match Z0 to
its realistic values depending on the artery of interest.

3.3.1 Case I

We used data from a large-scale study [127] of 2026 healthy middle-aged subjects that
were divided into four groups with half-decade age ranges with means of 37.5, 43, 48
and 53.5 years. Pressure waveforms were measured from the left common carotid artery
using applanation tonometry (flow was measured from the aorta using ultrasound). The
mean and standard deviation (std) values for HR, characteristic impedance (we used
the frequency-domain method results) and systemic vascular resistance (R) for men and
women are reported for each age group [127] in Table 3.1.

Although total arterial compliance values are provided in the study [127], we are
interested in load compliance values, which are much smaller than when measurements
from the proximal compliant vessels are involved in the calculations. Therefore, we used
the mean compliance values of the arteries distal to the heart (referred to as oscillatory
compliance in [14]), which were measured by invasive methods in [14] (4.852 and 2.670
in units of 10−1kPa−1·cm3 for men and women, respectively) to downscale the values
reported in [127] (see Table 3.1). That is, the compliance values (calculated from the
pulse pressure method) reported for each age group were scaled so that the total mean
value for each gender would be same as that reported in [14]. We have set d0 = 40 cm

for men and d0 = 35 cm for women which covers an approximate distance from the arch
of the aorta to the end of the internal carotid artery. The values were approximated
based on a distance of 38.6 cm, which was calculated from the data in [40].

The final carotid Trefl model for this case was calculated according to our formula
(3.12), with load compliance values derived from [14] and [127], d0 of 40cm and 35cm for
men and women, respectively, and PWV, Z0 and R as reported in [127] for each gender
and age group. The values in Table 3.1 were also used to calculate the model estimates
of Trefl in (3.1).

Next, to estimate the augmentation index the values of the reflection coefficient at the
load site, i.e., |Γ(0)| = |pb| / |pf|, are needed. These values were calculated in [127] as the
amplitude of the reflection coefficient at the heart rate frequency. Using the measured
|Γ(0)| and estimated Trefl values in (3.19) and then (3.15) gives us the model-estimated
AI* values.
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Parameter Gender Mean ± std value of the age group Unit
Age range 35− 40 41− 45 46− 50 51− 56 years

HR M 61.1± 9.1 61.2± 9.2 63.1± 10.3 61.8± 9.9 bpmF 65.3± 9.0 65.8± 8.8 65.2± 8.5 65.4± 8.1

Z0
M 155 136 135 134 10−4kPa·cm−3·sF 155 150 145 145

R
M 1654 1690 1688 1713 10−4kPa·cm−3·sF 1650 1677 1722 1804

C
M 4.785 5.010 4.875 4.740 10−1kPa−1·cm3
F 2.781 2.726 2.642 2.531

Table 3.1: HR, Z0 and R values as reported in [127] (age groups of case I) for men
(M) and women (F). Scaled C values are based on [127] and [14].

3.3.2 Case II

For this case we used the data of 266 healthy participants (age range of 18-78 years
and mean ± std of 37.9 ± 18.9 years) reported in [107]. Radial arterial pressure was
measured using applanation tonometry and the time interval between the first and the
second systolic peaks was calculated as Trefl. None of the model inputs are reported in
[107] and therefore, for this case, we used values reported in other literature as follows.
Values of C were measured with invasive methods in 115 healthy volunteers in [14].
Although a linear relationship between C and age was derived in [14], non-linear changes
are noticeable in the scatter-plot and thus we digitized the data to fit an exponential
function as:

C = 12.39× exp (−0.0277×Age) + gc. (3.20)

Where gc is a gender correction parameter, set to +0.77 and -0.70 for men and women,
respectively, to satisfy Cmen(age = 40) = 4.85 and Cwomen(age = 47) = 2.67, as reported
in [14] for the mean age of each group (the same units used in Table 3.1 are used here).
To model R in healthy volunteers aged less than 50 years, we used the linear increase
reported in [14] in the first line of (3.21). However, for ages more than 50 years, we
propose an exponential relationship, the second line of (3.21).

R =

 8.1×Age + 926.9 + gr Age ≤ 50

333.4× exp(0.0277×Age) + gr Age > 50
. (3.21)

This is based on a comprehensive blood pressure study of 2036 participants stating
that the estimation of the vascular resistance using MBP underestimates the actual
resistance value at ages above 50-60 years [128]. The exponential factor is set to a
similar rate as the observed exponential rate in C; i.e., 0.0277, and the amplitude of
333.4 is used to avoid discontinuity at age = 50. The gender correction factor, gr, is set
to -32 and +105 respectively, for men and women to satisfy Rmen(Age = 40) = 1219

and Rwomen(age = 47) = 1413 [14] (same units used in Table 3.1 are used here).
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Pulse wave velocity has the form of

PWV = 10×Age + 300
(
cm · s−1

)
(3.22)

as reported in [129] and was measured in the ascending aorta and matches the results
in [130]. Finally, we estimated the characteristic impedance as Z0 = 1.185 kPa·cm−3·s
with a WK3 fit to the synthetic data provided in [131]. Based on the results reported in
[127], Z0 either does not change with age or changes negligibly; thus, we used a constant
Z0 = 1.185 for all ages. We also set d0 = 20 cm and d0 = 16 cm, respectively, for
men and women corresponding to the length of the radial artery (a mean of 18cm was
reported in [132]).

Putting mentioned the values for each parameter into (3.12) and (3.1), we obtain
radial Trefl estimates for our model and the existing model, respectively.

3.3.3 Case III

A radial augmentation index was reported in [121] for 632 healthy subjects, where AI was
defined as in (3.13). Age-independent heart rate values were reported as 70.6 ± 11.0 and
71.5 ± 9.5 (mean ± std, beats per minute (bpm)) for men and women, respectively [121].
For this case, all other inputs were selected as described in Section 3.3.2. First, Trefl was
calculated as per (3.12) and then, using (3.9), |Γ(0)| was calculated. Substituting into
(3.19) provides the modelled AI for the radial artery.

3.3.4 Case IV

Changes in aortic Trefl with PWV in 73 outpatients (age range 17-95 years, mean age
51.8 years) were reported in [133]. In this study, pressure waveforms were recorded
with non-invasive methods from the carotid artery and were assumed to be similar to
the pressure values in the ascending aorta and central arteries. Reported values were
not separated by gender and so we used (3.20) and (3.21) to obtain gender-independent
estimates of C and R with gc = 0 and gr = 0, respectively. We set d0 = 40 cm and
Z0 = 0.136 kPa·cm−3·s, estimated for the carotid artery using a WK3 fitted to the
synthetic data of [131]. Results are gender-independent carotid reflection times for the
new and existing models using (3.12) and (3.1), respectively calculated using the same
age range as in [133]; i.e., 17-95 years.

3.4 Results

The formulas derived from the model were validated numerically against the numbers
reported in the literature. For cases I-III the results are shown in Fig. 3.2 and Fig. 3.3
and for case IV the results are in Fig. 3.4. Note that case I reports AI* values, whereas
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Figure 3.2: Trefl in (a) carotid artery, case I and (b) the radial artery, case II for men
(squares) and women (triangles). Measured data (blue) is from the literature [107, 127]
and estimated values are from the proposed model (red) and existing model (green).

Values are means ± std.
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Figure 3.3: Measured (blue) and estimated (red) augmentation index for men
(squares) and women (triangles) in carotid (solid lines, case I) [127] and radial arteries

(dashed lines, case III) [121]. Values are means ± std.

case III reports AI values. The AI* values reported in [127] are in the form of means and
standard errors of the mean, which have been converted into mean ± std in the present
study. Error bars for estimated AI in case III are only due to heart rate variability and
no other variation has been taken into account. The results show high similarity between
the modelled and measured Trefl and AI values and that the reflected wave estimates are
much improved compared to those of the existing model, especially those of the radial
artery.

Carotid AI* for young adults is reported to be negative but becomes positive as age
progresses [53, 134]. Based on our model Prefl/Psys = cosωTrefl + |Γ(0)| gives estimated
Prefl/Psys values ranging from 1.02 to 1.14 and from 1.09 to 1.22 for men and women,
respectively for case I. With a linear regression of the model outputs, we speculate
that at the ages of 34.0 and 24.9 years in men and women, respectively, we will obtain
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Figure 3.4: Estimated carotid Trefl against PWV using the proposed model (red) and
existing model (green) compared with measured values from [133] (case IV; blue).

Prefl = Psys and, thus, AI*=0 for this case (see Fig. 3.3). Carotid AI* zero crossing
has been reported at the ages of 31.7 years (for 38 male and 18 female participants in
[53]) and 23.7 years (for 74 male and 60 female participants in [134]). This is another
prediction of the model that is confirmed in the literature.

3.5 Discussion

In this chapter a TL model is used to formulate Trefl and AI in terms of both line and
load properties. Through several case studies we compared our models for Trefl and AI
against published measured data and showed that we can closely match the observed
data. Thus, we can apply these models to gain insights into several observed phenomena,
which are discussed in this section.

Several studies have reported a strong correlation between Trefl and age [106, 107, 110].
Based on our model we can see that the load site delay of the reflection time, ∆tload, is
primarily influenced by the compliance of the load, as the resistance properties, R and
Z0, are found in both the numerator and denominator of the model in (3.12), and so
cancel out to some extent. In addition, PWV itself is a function of the line compliance
(the compliance of the arteries between the measurement and reflection sites, which
is commonly used as an index of vascular compliance [135]) and, combined with the
influence of load compliance (the WK3 compliance at the load) makes Trefl a strong
index of overall vascular compliance with only weak effects from vascular resistance.
It is well known that compliance decreases with age; therefore, based on our model
the correlation of reflection time with age is due to a strong dependence on changes in
compliance and PWV with age.

It is reported in the literature that Trefl does not decrease linearly with age in elderly
populations and, in fact, almost flattens after the age of 65 years [46, 106, 115]. The
flattening effect is reflected in our model (Fig. 3.2) through three main components.
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1) Model (3.20) indicates that there is a non-linear relationship between load compli-
ance and age. Based on the data reported in [14], measured load compliance does not
decrease as sharply with age in older populations as it does in younger ones. 2) Vas-
cular resistance, R, increases exponentially after the age of 50 years (see (3.21)), which
contributes to an increase in ∆tload and thus Trefl. This ultimately stops ∆tload from
dropping which weakens the dependency of Trefl on age and compliance in older popu-
lations. 3) The influence of characteristic impedance makes the effect highly dependent
on the site of measurement. Based on our estimates from the data in [131], the value of
Z0 increases almost ten-fold as the measurement site is moved from the carotid to the
radial artery. The small Z0 values in proximal arteries heighten the flattening effect on
Trefl. As an example, with all three elements in effect, based on the model for case IV,
carotid Trefl decreases by 37ms between the ages of 10 to 20 years and only 9ms from 80
to 90 years. Thus, based on our model, the flattening of the reflection time curve is due
to exponential changes in compliance and vascular resistance with age. Also, the effect
is more noticeable in proximal arteries due to the decreased impedance in large vessels.

It has been reported that the effective reflection site moves distally after the age of 65
years [2, 106], although this view is challenged in several studies [46, 115]. Our model is
able to explain this phenomenon by shedding light on the delay in the reflected wave at
the load site, ∆tload. Note that the ∆tload portion of Trefl is usually ignored in analyses
[2, 46, 106, 108, 109, 112, 113, 115], despite the hints given in [118] and [115]. Based on
our model ∆tload can account for up to 25% (case IV) and 62% (case II) of Trefl in the
carotid and radial arteries, respectively. ∆tload becomes larger relative to ∆tline with
movement distal from the heart for two main reasons: a decrease in d0 and an increase in
Z0. Figures 3.2 and 3.4 provide examples of radial and carotid Trefl estimates acquired
from (3.1) for cases II and IV, respectively. Thus, the results reported in [2, 106] using
(3.1) should be treated with care and our model (3.12) can be used for more accurate
interpretations of the location of the reflection site. Nonetheless, the model seems to
underestimate Trefl in case IV (Fig. 3.4) when PWV changes between 8 and 9 ms−1

which correspond to only seven collected data points in case IV. Although the proposed
model vastly improves the accuracy of Trefl estimation compared to the existing model,
a more comprehensive recorded dataset may be required to investigate the data points
that do not align with the proposed model.

It is reported in the literature that reflection time does not notably change with HR;
only a 10ms drop in radial Trefl was reported for HRs of 60-80 bpm for the data in case
II [107]. Our model confirms the independence of HR and Trefl as HR does not affect
the Trefl calculated by (3.12).

The AI has been shown to have negative correlations with Trefl [136] and HR [137]
and a positive correlation with age [2, 53, 121]. Our model also shows these effects and
describes AI as a function of Trefl, heart rate and reflection coefficient (see (3.19)). Even



A Mathematical Model of Wave Reflection 38

in extreme cases, max(Trefl) < 0.25s and max(fHR) < 0.5Hz (fHR being HR frequency)
and, therefore, 0 < ωTrefl < π/2, suggesting that the cosine function is monotonically
decreasing and AI will always increase with decreases in Trefl or HR, explaining the
negative correlation. Thus our model suggests that the positive correlation of AI with
age is due to decreases in Trefl with ageing and the negative correlation between AI and
HR is due to the presence of the cosine function.

A flattening effect of the AI has repeatedly been reported [2, 111, 123]. It has been
observed that AI/AI* flattens after the age of 55 years [123] or can even decline [2].
Although no decline in AI/AI* was predicted by the proposed model, flattening was
noticeable in the model outputs with age progression: there were only 1.3% and 2.8%
increases in radial AI (case III) between 65-75 years for men and women, respectively.
This AI/AI* flattening is due to the flattening of reflection time, since the other influence
on AI is the reflection coefficient, which only increases slightly with age [127]. Thus, our
model suggests that the observed flattening in AI/AI* is due to age-related increases in
vascular resistance and more importantly, a slowing of the rate of decrease in compliance
with age.

3.5.1 Study Limitations

The proposed model is based on a set of theoretical assumptions that describe sim-
plified relationships between desired vascular ageing indices and comprehensible model
elements. As such, the model is subject to practical limitations that hinder its validity.

Theoretical Assumptions: The Taylor series expansion in (3.11) only holds for
small values of the arctangent argument, x, i.e., |x| < 1. However, based on published
values [121], we have max(x) = 0.50 radians, making this assumption reasonable for our
model.

By assuming a lossless TL, we do not account for reductions in pressure as the pressure
wave propagates along the vessel. In reality, the reflected waves lose power as they travel
towards the heart. Thus, we may overestimate |Γ(0)| in estimating the augmentation
index. Nonetheless, the results are less affected in distal arteries, as |Γ(0)| is not a
dominant factor in the calculation of AI. This is because 1) Z0 increases 2) the reflection
time is shorter and, thus, cosωTrefl becomes the dominant influence on the AI.

Practical Limitations: In practice, calculation of the peak-to-peak time difference
between the forward and backward waves is difficult, especially in proximal arteries where
forward and backward waves do not have separate peaks. Accordingly, various methods
have been developed for calculating the return of reflected waves. Trefl is calculated in
[127] (case I) using the 4th derivative method [138], which is referred to as the shoulder
time Tsho in [110]. Whereas [133] (case IV) uses the timing of the inflection point,
Tinf, as described in [110]. Wave separation analysis can also be used to calculate the
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time difference of the forward and backward waves using the zero-crossing point of each
waveform, which is called Tf-b in [110]. The theoretical approach used in this chapter
uses the peaks of the forward and backward waves to calculate Trefl, which is different
to the definition of Tf-b as each wave shows different rise time from the zero-crossing
point to the peak. However, the modelled Trefl best matches the definitions of Tsho and
Tinf in [110].

The study is limited by scarcity of reported measurements that could be used as model
input parameters. In particular, age-related increases in systemic vascular resistance
have only been reported in a small number of papers. Although linear increases in R with
age were reported in [139] and [14], it was suggested that R values are underestimated
in older subjects [128]. More investigation is required to accurately model changes in R

with age.

3.6 Conclusion

In this chapter, Trefl and AI, the two widely used pressure waveform indices, are formu-
lated using a TL model. Derived formulas were successfully applied to data from the
literature. The results confirm the dependency of both indices on the vascular ageing
indicators of compliance, PWV and systemic vascular resistance. The model is able to
explain the flattening of Trefl that has been repeatedly reported in the literature, as well
as the moving of the reflection site, which is a subject of ongoing controversy. We also
showed that a larger portion of Trefl might be due to the delay caused at the load by
the compliance at the reflection point. Overall, our results suggest that Trefl is strongly
influenced by vascular compliance and represents a useful index of it in populations
younger than 65 years. In older populations Trefl remains influenced by vascular com-
pliance but to a lesser degree as there is an exponential increase in vascular resistance
after 50 years, which has an opposite effect on Trefl. AI is itself inversely dependent on
Trefl and so shows similar flattening with age; however, it is also strongly affected by
HR, which influences AI values independently of vascular compliance.



Chapter 4

Indexing Cerebrovascular Health
Using TCD

4.1 Introduction

Due to the well-documented association between changes in compliance and serious brain
pathology, as outlined in Chapter 2 there has been considerable research into techniques
that measure changes in cerebrovascular compliance. In the cerebral vessels the pressure
wave cannot be measured directly, however, indices based on the pressure wave, such
as AI, have been applied to blood flow and blood flow velocity waveforms which can
be measured in the brain. Currently, the most common method to assess changes in
cerebrovascular compliance is TCD. As mentioned in Chapter 2, TCD is a non-invasive
technique that has been preferred because it is considered to be safe, cost-effective and
relatively fast to perform. TCD is based on the Doppler effect: ultrasonic waves of a
given frequency as emitted into the body and reflected at a different frequency by blood
cells moving within vessels. This difference in frequency is directly proportional to the
speed of the blood cells [140]. TCD is recognized to have excellent temporal resolution,
making it ideal for capturing information on blood flow dynamics.

Importantly, TCD can not measure compliance directly. However, several indirect
indices have been developed, including the PI, explicitly derived for the TCD waveform,
and AI, based on the pressure wave AI measure, which are considered to provide rea-
sonable approximations, see (2.23) and (2.22), respectively. The pulsatility index is the
most commonly reported indirect measure of vascular health in the literature. PITCD,
first defined by Gosling and King in 1974, is derived from the peak-to-peak height of the
flow velocity waveform divided by the mean flow velocity (see (2.23)) [54]. Consistent
with the idea that PITCD is an index of vascular health, it has been shown to correlate
robustly with age [52, 58, 69] and aortic PWV [52]. Studies have reported correlations
between PITCD and white matter disease [64, 65], diabetes mellitus [62] and dementia

40
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[57].
There have been different interpretations of which particular vessel properties influence

PITCD measurements. Some have proposed that PITCD measures CVR at the reflection
site [21, 55–57, 65], while other studies have reported inconsistent results [141–144].
Following the discovery of vascular compliance, it has been hypothesized that as vessels
lose their compliance and become stiffer, the peak systolic (maximum) flow velocity
increases and the end-diastolic (minimum) flow velocity decreases, which elevates the
calculated PITCD values [64]. More recently, PITCD has been modelled as a combination
of resistance, compliance, PWV and HR [58]. Consequently, PITCD is now often reported
as a general index of cerebrovascular health.

The second commonly used index of compliance is the augmentation index. AI was
initially defined for the pressure waveform [108] and has been correlated with vascular
ageing and aortic PWV [121]. AI captures the reflected wave augmentation of the peak
pressure by calculating the ratio of the reflected wave amplitude to the systolic wave
amplitude with higher values said to result from earlier arrival of the reflected wave due
to stiffer arteries. The AI index has been applied to TCD flow velocity waveforms in
several studies [53, 145], and a significant positive correlation between MCA AITCD and
age has been reported (r = 0.54, n = 286 [59]; see Table 2.2 for more age correlations).
However, several studies have questioned the reliability of using AI as an indicator
of vascular compliance [2, 63, 146]. Studies have shown that AI also correlates with
numerous biological factors not directly related to vessel properties including sex, heart
rate, food intake, hydration status, height, weight and body composition [2].

An alternative TCD index to PI and AI, which may provide a more direct measure
of vessel health, is a time-based index directly measures the reflection time. In Chapter
3, we provided mathematical proof that a timing index can accurately reflect vascular
properties, has a clear relationship with vascular resistance, vascular compliance and
PWV, and is not influenced by biological factors that are independent of vessel proper-
ties. In this chapter, we define a TITCD as the inverse of the interval between the systolic
and reflected waveform peaks in a TCD signal. Thus, TITCD will track the timing of
the blood waves in a similar way to PWV, which is the gold standard for quantifying
vascular stiffness in central arteries. After introducing the new TI, we investigate the
correlations between three TCD indices (PI, AI and TI) and other accepted measures
of vascular ageing such as the PIMRI, age and CRF.

4.2 Methods

Data from two different sets of experiments have been used in this study. Experiment
one is a new study including Doppler, MRI and CRF whereas the second experiment
uses Doppler recordings from an existing dataset.
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4.2.1 Experiment 1

Data from 38 adult volunteers (23 female and 14 male, age range = 24-66 years, mean
age = 41.7 years) were recorded, which we will refer to as dataset D1. Participants
were recruited from the local community of Newcastle, Australia and provided informed
consent prior to assessment. The study protocol was approved by the University of
Newcastle Human Research Ethics Committee and registered in the Australian New
Zealand Clinical Trials Registry (ACTRN12619000144112). Height, weight, age, gender
and resting HR were recorded and participants completed a physical activity question-
naire. Data acquisition was carried out over two imaging sessions on two consecutive
days for each participant. Participants were asked to refrain from caffeine consumption
before their scans. However, it was not an exclusion criterion of the study.

TCD ultrasound (DopplerBox X; Compumedics DWL, Singen, Germany) at a sam-
pling rate of 100Hz was used to record cerebral blood flow velocity from the right and
left MCAs. Participants wore a headpiece with bilateral Doppler probes which stayed
in place for the 300 seconds of resting-state recording. In this session, the resting-state
HR was measured using an HR monitoring device (Omron HEM-7320 HR). Participants
were in a sitting position for approximately five minutes during headpiece setup before
recording took place. During TCD recording, HR was measured once per minute for
three minutes. The average of the three HR measurements was used as the resting-state
HR.

The participants were also scanned on a 3T MRI scanner (Magnetom Prisma, Siemens
Healthineers, Erlangen, Germany), equipped with 64-channel receive-only head coil,
while a standard built in dual channel body coil was used for radio frequency (RF)
transmission. Blood flow was quantified using a PC flow quantification sequence (TR
= 26.5ms, TE = 6.9ms, slice thickness = 5mm, matrix 256 × 256). A single excitation
with a velocity encoding value of 120cm s−1 was used to quantify blood flow in MCAs
[147, p. 161-175]. The TCD and MRI scan sessions were held on two consecutive days.

Two subjects did not produce usable Doppler recordings and were excluded from
further analysis. Another three did not produce MRI data and were excluded from the
Doppler versus MRI comparison.

4.2.2 Experiment 2

This experiment was carried out using data from previous TCD experiments examining
cognitive performance, some of which has been published in [148, 149]. The aim of using
this dataset, which we will refer to as D2, was to uncover the relationships between TCD
indices and age in a sample with a wide age range that included older participants, as
consistently lower correlations have been reported between PITCD and age in samples
comprising narrower, younger age ranges. [51, 52, 61, 62, 69, 70]. Sample D2 had 55
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Figure 4.1: Two different TCD flow velocity samples from D1. (a) Averaged MCA,
subject #22, age 25 years (b) Averaged MCA, subject #17, age 66 years

subjects (34 female 21 male, age range = 21-80 years, mean age = 45.8 years). The data
was recorded with the same device as used in Experiment 1. The recording time was
shorter than Experiment 1 and varied between subjects. Data were inspected manually
for each subject and a 10-second-long segment with the highest quality was selected for
further analysis. During manual inspection three subjects were excluded from the initial
dataset as peak detection was not possible due to excessive noise levels during their
recordings.

4.2.3 Calculated Indices

PITCD: Indices were calculated for both D1 and D2 using the same algorithms. The
PITCD was output by the device, with values averaged per subject. The device calculated
PITCD as defined in (2.23) [54]; i.e:

PITCD =
Vmax − Vmin

V
, (4.1)

where Vmax, Vmin and V are the maximum, minimum and mean flow velocities, respec-
tively. A transcranial Doppler pulsatility index, alternative definition (PI*TCD), uses
Vsys − Vdia in the numerator which are the peak systolic and end-diastolic velocities,
respectively. Both indices provide the same values in most cases. Differences arise when
Vsys and Vmax have different values (see Fig. 4.1b for an example). This is the case in
older populations and in stiffer arteries, where the forward and the reflected waves meet
early and Vsys is in the form of an inflection point, whereas Vmax becomes the reflected
wave peak Vrefl (see Fig. 4.1b). Nonetheless, we compared PITCD values output by the
device with manually calculated PI*TCD values derived from our experimental data and
found no notable differences. Therefore, only PITCD values directly calculated by the
device are reported in this chapter.
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AITCD: In order to calculate the augmentation index, first end-diastolic points were
extracted automatically using Matlab software by finding the end-diastolic points (min-
imum flow velocity points) in each 300- or 10-second-long signal for Experiment 1 and 2,
respectively. The end-diastolic points were used to determine each cardiac cycle which
were then averaged to produce a short, single-heartbeat-long waveform measurement
per vessel. Next, the systolic peak, Vsys, and reflected peak, Vrefl, were located manually
on the waveform and AITCD was calculated as per (2.22); i.e.:

AITCD =
Vrefl − Vdia
Vsys − Vdia

. (4.2)

AITCD values were averaged across both MCAs, providing a single value per subject.
PIMRI: The magnetic resonance imaging pulsatility index is defined similarly to the

transcranial Doppler pulsatility index as mentioned previously in (2.27) which is [79, 150]

PIMRI =
Qmax −Qmin

Q
, (4.3)

where Q is blood flow (ml s−1) and the bar sign indicates the mean value. MRI scanner
software (Siemens Syngo) was used to quantify flow values by placing a region of interest
around the MCA. The flow values for every repetition time (TR) produced waveforms
for the length of the heart beat, for which the maximum, minimum and mean values
were used to calculate PIMRI following the method in [150]. Unlike TCD, for which
only flow velocity is available, MRI measures of PI consider flow (which combines flow
velocity with vascular cross-sectional area) and are more closely tied to the definition of
compliance. From the 33 subjects of D1, PIMRI was calculated either for both MCAs
(n = 20) or a single MCA (n = 13) based on data quality. All the indices from the right
and left MCA were averaged for each subject.

CRF: CRF was estimated based on a non-exercise method developed by [151], using
information such as age, gender, body mass index, resting-state HR and physical activity
score. CRF was acquired in two steps: 1) A physical activity questionnaire (Table 4.1)
and 2) Equation (4.4), as listed below.

CRF =+ 2.77× (0 for women, 1 for men)

− 0.10× (Age in years)

− 0.17×
(
Body mass index in kg/m2)

− 0.03× (Resting HR in bpm)

+ 1.00× (Physical activity score)

+ 18.07

(4.4)
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Physical Activity Description Score
Inactive or little activity other than usual daily activities 0.00
Regularly (≥5 d/wk) participate in physical activities requiring low levels of
exertion that result in slight increase in breathing and heart rate for at least
10 minutes at a time

0.32

Participate in aerobic exercises such as brisk walking, jogging or running, cy-
cling, swimming, or vigorous sports at a comfortable pace or other activities
requiring similar levels of exertion for 20 to 60 minutes per week

1.06

Participate in aerobic exercises such as brisk walking, jogging or running at
a comfortable pace, or other activities requiring similar levels of exertion for
1 to 3 hours per week

1.76

Participate in aerobic exercises such as brisk walking, jogging or running at
a comfortable pace, or other activities requiring similar levels of exertion for
over 3 hours per week

3.03

Table 4.1: Physical activity questionnaire [151]

Proposed Index: The proposed index relies on information from both forward and
reflected waves; however, unlike AI, which is amplitude based, the new index only uses
the time information. Here, we define the TCD reflection time (Trefl) as the time differ-
ence between the occurrence of peak systole and the reflected shoulder of peak systole
(in cases of augmented waveforms) or the time difference between two distinct positive
peaks (in cases of separated forward and reflected waves; see Fig. 4.1). Then, we define
TITCD as:

TITCD =
1

Trefl
, (4.5)

so that TITCD will be an index of vascular stiffness. TITCD was calculated for both MCAs
using custom Matlab® software and then the values were averaged for each subject.

4.2.4 Statistical Analysis

Statistical analysis was conducted using Matlab®. The normality of the data distribu-
tions was tested using the Lilliefors test with a 5% significance level. The correlation
coefficients were calculated using Pearson’s correlation for normally-distributed data
and Spearman’s correlation for non-normal data. Bonferroni corrections with initial
α = 0.05 were made for multiple comparisons, resulting in an adjusted level of signifi-
cance of 0.0056 for Experiment a and 0.0167 for Experiment 2.

4.3 Results

The correlation matrixes for Experiment 1 and Experiment 2 are shown in Table 4.2.
Significant correlations have been marked after adjustment for multiple comparisons.
Related scatter plots and least square lines are shown in Figs 4.2 and 4.3. For D1, two
older subjects with high CRF values for their age are marked by orange arrows (←←)
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Age PIMRI CRF

PITCD
−0.25(0.15) 0.04(0.87) 0.10(0.55)

[−0.55, 0.10] [−0.33, 0.38] [−0.17, 0.36]

AITCD
0.68∗(0.44e−5) 0.38(0.028) −0.65∗(0.15e−4)

[0.45, 0.83] [0.03, 0.64] [−0.80,−0.43]

TITCD
0.70∗(0.19e−5) 0.53∗(0.002) −0.79∗(0.14e−7)

[0.49, 0.84] [0.23, 0.75] [−0.89,−0.58]

Age

PITCD
0.44∗(0.0009)

[0.17, 0.65]

AITCD
0.61∗(0.26e−5)

[0.42, 0.74]

TITCD
0.50∗(0.0001)

[0.23, 0.68]

Table 4.2: Correlation matrix for experiment one (left) and experiment two (right)
reported as r(p-value)[95% confidence interval]. Correlations found to be significant

after Bonferroni correction for multiple comparisons are marked by an asterisk.

in Figs 4.2 and 4.3. Figure 4.2 shows that, unlike AITCD and PITCD, TITCD is able to
distinguish these subjects from other aged individuals. These cases suggest that TI may
better reflect the age-independent impact of CRF on vessel health, which is one of the
key aim of vessel health measures.

In Experiment 1, PITCD did not have any significant correlation with age, CRF or
PIMRI, and the observed weak correlation with age was negative. The AITCD and TITCD
both correlated significantly with age. Although the correlations with age are similar,
TITCD has a stronger correlation with CRF. Among the three Doppler indices only
TITCD has a significant correlation with PIMRI.

In Experiment 2, all three Doppler indices PITCD, AITCD and TITCD correlated sig-
nificantly with age. The correlation coefficients were higher for AITCD and TITCD than
PITCD.

In the scatter plots of Fig. 4.2, there seem to be outliers marked by green squares.
The data for these subjects were carefully re-analysed but we found no reason to remove
them. However, if these subjects were removed the correlation coefficients would be
rD1 = −0.12 (not significant) and rD2 = 0.53 for PITCD and age.

4.4 Discussion

The PITCD is the most commonly used and easy-to-calculate Doppler index. To un-
derstand the controversy in the interpretation of PITCD, it is useful to consider the
mathematical model developed in [58] that extends the single-element model of [152] to
a WK3 which describes PITCD as:

PITCD =
pHR

CPP
×
√
1 + (2πfHR × CVR× C)2, (4.6)

where PITCD is defined as the fundamental harmonic of the flow velocity divided by the
mean flow velocity. Variable pHR is the fundamental harmonic of arterial pulse pressure,
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Figure 4.2: TCD indices plotted against health indices. The solid lines show least-
square fits, and the dashed lines show the 95% confidence bounds, D1 is in blue and

D2 is in red.
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fHR is HR frequency, C is cerebrovascular compliance and CPP is cerebral perfusion
pressure (the driving source of blood inside the cerebrum) [58, 153]. The main point to
consider in (4.6) is that although CVR and C affect PITCD positively, they each change in
different directions with age; i.e., CVR increases whereas C decreases. In younger adults,
these effects may cancel each other out; hence, the lower correlations between PITCD and
age (rD1 = −0.25, insignificant) and CRF (rD1 = 0.10, insignificant). However, in older
adults, the increased stiffness, or decreased C, may have a dominant effect, resulting
in a strong decrease in PITCD even when CVR is increasing. This can explain the low
correlations of PITCD with age in younger adults reported in the literature [61, 70]. Our
results confirm this for D1, which comprised a relatively young population, where the
correlation between PITCD and age is negative (rD1 = −0.25, insignificant). For D2
(rD2 = 0.44), PITCD exhibits a greater increase after the age of 65, as shown in Fig. 4.2.

The PIMRI is a different predictor of vascular ageing than PITCD that considers blood
volume changes rather than blood velocity changes. Compliance is the change in blood
volume relative to changes in pressure. An MRI, which measures blood flow (i.e., volume
per unit time), can more accurately track volume changes than TCD. If the vascular
cross-sectional area was known, or if it was constant, it would be possible to derive
blood flow from blood velocity. However, changes in vascular cross-sectional area can
not be assumed to be constant, as it is these changes that actually define compliance.
In fact, a subtle assumption used in deriving (4.6) is that the vascular cross-sectional
area is constant, which is particularly problematic in younger subjects with compliant
arteries. Thus, the uncorrelated PITCD and PIMRI results (rD1 = 0.04, insignificant) can
be explained by the younger composition of D1 and also the lack of cross-sectional area
information in PITCD.

The AI is strongly related to vascular ageing factors [154]. Assuming a TI with a
WK3 as the load, the AI in the pressure waveform can be formulated as [154]:

AI ≈ 2

3

(
cos (2πfHRTrefl) + |Γ(0)|+

1

2

)
, (4.7)

where Γ(0) is the reflection coefficient, which equals the amplitude of the reflected wave
divided by the amplitude of the forward wave, measured at the load site [154]. As seen
in (4.7), the AI includes Trefl and the reflection coefficient, where are both reported
to change significantly with age [105, 127]. For AI calculated using the Doppler-based
velocity waveform these factors are assumed to contribute in the same way as we have
shown significant correlations of AITCD with age (rD1 = 0.68 and rD2 = 0.61), CRF
(rD1 = −0.65) and PIMRI (rD1 = 0.38, insignificant). However, HR is another contribut-
ing factor to AITCD (see (4.7)), a dependency that has also been reported in practice
[155]. This is a factor that may affect AI independently of vascular compliance or resis-
tance [146].
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The timing-based index TI has a strong relationship with vascular compliance. In the
context of the pressure waveform, evidence of change in the time of reflected waves with
age have been presented on practical [105] and theoretical bases [154]. As initially sug-
gested in [118] and then mathematically modelled in [154], the time difference between
the forward- and the backward-travelling pressure waves (i.e., Trefl) can be given as:

Trefl ≈
2Z0 × CVR× C

CVR + 2Z0︸ ︷︷ ︸
∆tload

+
2d0

PWV︸ ︷︷ ︸
∆tline

, (4.8)

where ∆tline is the time delay between the two waves caused by the length of the arter-
ies, ∆tload is the delay at the reflection site due to the compliance of the vessels beyond
that point and Z0 is the characteristic impedance. The line delay is inversely propor-
tional to the pulse wave velocity; i.e., ∆tline ∝ 1/PWV. In addition, the load delay
is proportional to the compliance of the vascular bed (i.e., ∆tload ∝ C) and will also
decrease as the compliance of the vessels distal to the measurement site decreases with
ageing. Therefore, we would similarly expect TITCD to be highly dependent on vascular
compliance. The significant correlations of TITCD with age (rD1 = 0.70 and rD2 = 0.50),
CRF (rD1 = −0.79) and PIMRI (rD1 = 0.53) support this assumption. We can examine
the stronger correlation of TI with CRF than age by considering older subjects with
higher CRFs (see the two subjects tracked by arrow signs in Figs 4.2 and 4.3). We
hypothesize that the timing index is a predictor of vascular health that is independent
of age, while AI more closely predicts age than CRF. An ideal index of vascular health
would not necessarily have a strong correlation with age as lifestyle choices can signif-
icantly affect vascular health over time. Specifically, age related progression of aortic
and carotid stiffness has been shown to be slower in old participants with a history of
high cardiovascular fitness than in those with a history of low fitness [99].

It should be noted that indices that are influenced by the reflected wave (TI and
AI explicitly, and PI in some cases) implicitly assume that the distance of travel of
the reflected wave is consistent across subjects, such that differences in the timing and
amplitude of the reflected wave solely reflect differences in compliance. In the aorta, the
gold standard measure of aortic stiffness explicitly estimates the travel distance along
the aorta, through external measurement and modelling, then calculates the PWV as
the ratio of distance to time difference. This is more difficult to do in the brain.

In general, the application of pressure waveform indices to the Doppler waveform must
be done with care due to the differences between the two waveforms. While we often
think of a single reflected wave, in reality there are many reflected and re-reflected wave-
forms that comprise an observed signal. In order to investigate the influences of these
factors, a simulated flow waveform is shown in Fig. 4.4 (a simpler form of the ones re-
ported in the literature [156]) which illustrates the underlying reflected and re-reflected
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Figure 4.4: Simulated flow velocity signal to demonstrate summation of incident,
reflected and re-reflected waves. Blue, green and red dashed lines represent the incident
forward traveling wave, the re-reflected wave and the reflected wave, respectively. Solid
line is the sum of the three waveforms. tsys and trefl are the time of observed systolic
and observed reflected peaks. ti, tr and trr correspond respectively to time of incident,

reflected and re-reflected peaks.

waveforms. The reflected flow velocity (i.e., blood that travels toward the heart) is
recorded with a negative amplitude by the Doppler device and thus is subtracted from
the forward waves. The re-reflected flow, however, is reflected twice during the cardiac
cycle and travels in the same direction as the original forward wave. This waveform has
a positive amplitude when its velocity is measured by the Doppler device. Note that
both reflected and re-reflected waveforms have positive amplitudes on pressure readings.
Therefore, Doppler-measured velocity waves will have a different shape to pressure waves
and the use of the Doppler indices taken from pressure studies must be done with care.
However, based on Fig. 4.4, we can see that an observed reflected peak is more influenced
by the re-reflected wave. In other words, the reflected wave plays a part in forming a
negative dip between the observed forward and reflected peaks and Vrefl is mainly de-
termined by the re-reflected wave. Further, in practice, comparison of simultaneously
recorded pressure and flow velocity waveforms has shown that the characteristic time
points used in the definitions of AI and TI are similar in both waveforms [53]. This sug-
gests that, in both pressure and flow velocity waveforms, the reflection time, pulsatility
index and AI not only account for the reflected wave but also a combination of reflected
and re-reflected waves. It also suggests that the stiffness / compliance measured through
PI, AI or TI may be equally affected by the upstream and more distal cerebral arteries.
Given the similarity of timing of the second peak in the pressure and flow velocity wave-
forms, we continued to use this second peak for our derivation of both the AI and TI
indices. Nonetheless, to our knowledge, there are no TCDs timing indices that consider
the effects of the negative reflected wave in the flow velocity waveform. This could be
considered in future work.
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There are several limitations to the design of the study described in this chapter,
which could potentially affect the measured variables. The study was conducted on two
consecutive days and the MRI and TCD were measured with the subject in different
positions; i.e. supine and sitting, respectively. However, the resting state was established
by having the subjects 1) sit for at least 5 minutes during the TCD headpiece set-up
and 2) spend at least 5 minutes in the supine position during the MRI session to acquire
other sequences. In addition, CRF measurement, which required HR measurements was
performed on the day of TCD measurement and was not repeated.

4.5 Conclusion

The most commonly used TCD index, PITCD, should be interpreted with caution due
to its complex relationships with CVR and vascular stiffness/compliance. Each has
opposite effects on this index, resulting in PITCD having a weak correlation with age
and no correlation with CRF. On the other hand, AITCD and the proposed TITCD,
both showed strong correlations with age, thereby linking them with vascular ageing. In
addition, of all the Doppler indices, TITCD had the strongest correlation with CRF and
MRI, suggesting that this index may be a suitable replacement for PITCD and AITCD
for indexing cardiovascular health.



Chapter 5

A Mathematical Model of the
NiRS Signal

5.1 Introduction

In Chapters 3 and 4, we used transmission line (TL) theory to prove that the timing of
the reflected pressure wave is determined by vascular health factors such as compliance,
resistance and PWV. Then, we introduced the same concept to TCD blood flow velocity
waveforms to create a new timing index – the TITCD– and showed it to be strongly
correlated with age and PIMRI. Furthermore, its correlation with CRF is even stronger
than those of existing indices such as the AITCD and PITCD. Our next goal is to assess
the feasibility of indexing cerebrovascular health using NiRS.

As discussed in Chapter 2, NiRS uses the near-infrared portion of the electromagnetic
spectrum to emit light into the brain. The light is scattered and a very small portion
finds its way to light detectors placed 2 − 5cm away from the source [84]. Over this
spectrum light is mainly absorbed by oxygenated and de-oxygenated blood which have
different absorption coefficients. Using at least two wavelengths one can separate sig-
nals from oxy- and deoxy-haemoglobin as indicators of brain activation [84]. NiRS has
several advantages compared to other methods of brain study. Its low cost, portabil-
ity and high temporal resolution makes NiRS a worthy alternative to the well-known
fMRI techniques. NiRS also offers higher spatial resolution than EEG, thereby allowing
regional studies.

Due to the large number of biological components (HR, respiration, Mayer waves,
reflected waves, haemodynamic responses) and instrumental components in a NiRS sig-
nal, various signal processing methods have been used to extract components of interest,
such as the haemodynamic response function (HRF) [84] or arterial pulsation (AP) sig-
nal [10, 86]. As the true signal (ground truth) of the desired component is not known in
any given NiRS dataset, it is difficult to compare the effectiveness of signal processing

52
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Figure 5.1: Flowchart of the processes of the proposed model

algorithm. A common approach is to create a realistic model of the signal of interest,
for which the ground truth is known exactly, to facilitate design and analysis of signal
processing algorithms. Synthetic models have been proposed for different biomedical
signals and their sub-components such as ECG [157], EEG [158] and fMRI [159]. One
study [160] proposed a superposition of three sinusoids (HR, respiration and HRF) to
reconstruct NiRS scattering and absorption coefficients. However, to the best of our
knowledge no stand-alone synthetic signal model has been proposed for use with NiRS
signals. Such a model would need to accept basic physiological inputs like HR and
breathing rate (BR) and montage related inputs to synthesise realistic NiRS signals.

In this chapter, we study different components of NiRS signals and present a novel
model for generating artificial NiRS time series that have the same time and frequency
features as intensity-normalized in vivo NiRS signals. We input features like signal
power, BR and HR to the model and assess the validity of output using a test dataset
(see Fig. 5.1). This way, the model can generate synthetic signals similar to the recorded
testing set. Finally, the in vivo and synthetic signals are statistically compared. The
results demonstrate a significant similarity between the two. This will be a step towards
better understanding all the underlying elements of NiRS signals before constructing a
NiRS-based index of cerebrovascular health.
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5.2 Protocol and Data Collection

For parameter selection and model validation, NiRS data from 25 adult volunteers were
recorded (15 female, 10 male, age range = 24-67 years, mean age = 39.3 years). Par-
ticipants were recruited from the local Newcastle population and provided informed
consent in accordance with the University of Newcastle Human Research Ethics Com-
mittee. Participants were instructed to relax and sit still for 300 seconds of resting-state
NiRS recording. The setup consisted of four detectors, each crossed with 16 time mul-
tiplexed sources (half operating at 690nm and half at 830nm), making a total of 64
channels. A frequency domain NiR spectrometer (ISS ImagentTM, Champaign, Illinois)
with a 110MHz modulation frequency operating at a rate of 39.0625Hz was used for data
acquisition. Participants were asked to wear an Equivital EQ02 LifeMonitor sensor belt
during the recording, which measured their HR and BR.

Data were randomly split into a training set (T1) and test set (E1). The recordings
of five randomly selected subjects were assigned to T1 and the other 20 were assigned
to E1 and used for validation purposes.

5.3 Signal Modelling

Our proposed NiRS signal model comprises the following components:

s =
[
aAP 1 aLFC aHRF

]


sAP
sGN

sLFC
sHRF

+ 1. (5.1)

In which s is an N × 1 NiRS time series vector formed from the AP signal (sAP),
additive white Gaussian noise (WGN) (sGN), LF components (sLFC) and HRF (sHRF),
with N being the number of realizations.

[
aAP 1 aLFC aHRF

]
is an N × 4 matrix of

corresponding amplitudes and 1 is a N ×1 vector of ones. Typically, experimental NiRS
data is normalized to a mean of 1, which we did for this model. N is selected based on
the desired sampling frequency, fs, and the signal length is in seconds.

5.3.1 Arterial Pulsation Signal

Arterial Pulsations (APs) are the most distinguishable components of the NiRS signal
as they have the highest power. These signals are the footprint of massive changes
in blood volume as the heart pumps and blood is forced into cerebral arteries. This
volume of blood absorbs a large portion of the optical signal and a decrease in detected
light intensity becomes evident [161]. AP signals are used to extract cerebral arterial
health factors because they include signals from the reflected waves [10, 86, 162] that
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occur when the systolic blood volume hits arterial branches and is reflected. Reflected
waves are studied physiologically via blood pressure and blood flow velocity waveforms
and mathematically with TL models [46, 163–165]. NiRS recordings also show these
reflected waves [10, 86, 162], which are included in our model. There are several factors
that can alter AP-related variables, such as the environment temperature, body position,
emotional state, exercise and medicine use. In our model, we assume a stationary
participant and no changes in these factors. However, two additional key elements
continuously influence HR, even in stationary participants. Firstly, it is known that HR
accelerates during inspiration and slows down during expiration. This phenomenon is
referred to as respiratory sinus arrhythmia [166]. Secondly, Mayer waves, the cause of
which is debatable, result in small frequency drifts in ECG signals [157]. Due to the
similar nature of AP signals in ECG and NiRS signals, we assume that these frequency
drifts are also present in NiRS signals.

Ignoring reflected waves for now, we first model the respiratory and Mayer wave drifts
in the AP signal. For this purpose, we use a similar concept to the “RR interval” used in
ECG signal analysis. R peaks are the most distinguishable peaks in an ECG signal. An
RR peak-to-peak interval is defined as the time between consecutive R peaks. Similarly,
we define p(m) as an RR interval time series. Now, respiratory and Mayer drifts can be
modelled based on an established method that was proposed to produce synthetic ECG
signals [157]. The power spectrum of p(m) is described with two components as:

P (f) =
2∑

i=1

c2i√
2πσ2

i

exp

(
(f − fi)

2

2σ2
i

)
. (5.2)

Where fi, σi and ci represent the centre frequency, standard deviation and power of
the frequency drift, caused by the Mayer signal (i = 1) and respiratory signal (i = 2),
respectively. Taking the inverse Fourier transform of

√
P (f), using a random phase,

p(m) is generated as:

p(m) = {F−1
[√

P (f)ejθ
]
, θ v U [0, 2π)}, (5.3)

where F−1 is the inverse Fourier operator and U represents the uniform distribution.
p(m) is then normalized with the mean value set to the mean RR interval; i.e., 60/Hmean×
fs and the standard deviation (std) set to the RR interval std; i.e., 60/Hstd× fs (Hmean

and Hstd are the mean and std HR in bpm). Then, we define the systolic peaks (negative
peaks) of the sAP signal as:

šAP(n) = −aAP, n =

j∑
i=1

p(i) j = 1, ..., Np (5.4)
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Figure 5.2: Sample modelled sAP signal with added reflected wave, sRW. Related
variables are set to fs = 40, aAP = 0.01, aRW = 30%, Trefl= 0.2s and rSD= 0.7.

where Np < N is the number of samples in p(m) that satisfy our final signal length, N .
Now, having the systolic peaks in our raw AP signal, we place diastolic peaks (positive
peaks) between the predefined systolic peaks with the amplitude set to +aAP and the
systolic-to-diastolic duration ratio of rSD. The value of rSD is the ratio between 1) the
diastolic peak to systolic peak drop time and 2) the systolic peak to diastolic peak
rise time. This helps us include different systolic and diastolic durations in our model.
Finally, we perform a piecewise cubic spline interpolation to fill the remaining values in
the šAP signal.

The next step is to add a reflected wave, sRW, to the AP signal. Since the reflected
waves, in theory, have the same shape as the incident waves but are inverted in time,
we cut the diastolic-to-diastolic waveform, then invert it in time and scale the shape to
the amplitude of aRW (measured in the percentage of aAP) and then add it to the šAP
signal with a systolic peak to reflect the peak delay of Trefl. The result will be the sAP
signal; i.e.,

sAP = šAP + sRW. (5.5)

Sample sAP and sRW signals are presented in Fig.5.2.

5.3.2 White Gaussian Noise

NiRS signals usually contain high amounts of WGN originating from the instruments at
the measurement site. As the name suggests, WGN is characterized as being uniformly
distributed in the frequency domain and, therefore, is easily detected in bandwidths that
are clear from the influence of any other known components. This feature will be used
to set the noise power. In mathematical terms,

sGN(n) v N (0, σ2
n), (5.6)

where N is a normal distribution with a zero mean and variance of σ2
n.
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5.3.3 Low-frequency Components

LF components is a general term we use to refer to the two main low-frequency elements
of NiRS signals which are 1) Mayer and respiration waves (frequencies of around 0.1Hz

and 0.25Hz, respectively) and 2) VLF components (<0.1Hz).

5.3.3.1 Mayer and Respiratory Waves

These two elements are known to be present in NiRS signals as reported in the literature
[167, 168]. To clarify, in Section 5.3.1, we mentioned the frequency drifts that these
signals cause in HR and here we discuss the amplitude changes in NiRS signals caused
by the same sources. Here, we generate p1(n) as per (5.3) (with a different realization
of θ and length N), then normalize it to a zero mean and unit variance. We define the
Mayer and respiratory amplitude changes by

sMR(n) = p1(n), (5.7)

which will be added to other LF components discussed in this section.

5.3.3.2 VLF Components

The VLF (<0.1Hz) components of the NiRS signal correlate with similar components
in blood-oxygenation level dependent (BOLD) fMRI data [169]. Although the source
of these signals is unclear, they are thought to be associated with changes in vascular
dilation, vaso-motion, and Mayer waves [169]. We take advantage of the correlation
between VLF BOLD fMRI and VLF NiRS signals by adopting the approaches proposed
in the literature to model the VLFs in the fMRI BOLD signal [159]. The VLF part of
our synthetic model is defined as:

sVLF(n) =
K∑
k=1

A(k) cos(2πφ(k)n), (5.8)

where K is the number of VLF components, A is a 1 × K vector of amplitudes and
φ(k) = f1 + (f2 − f1)/(K − 1).(k − 1), where f1 and f2 are the low and high frequency
limits of the VLF elements. Finally,

sLFC = sMR + sVLF, (5.9)

5.3.4 Haemodynamic Response

The haemodynamic response function (HRF) indicates the oxy- and deoxy-haemoglobin
changes occurring during certain stimulation tasks. The nature of this signal has been
investigated thoroughly in the literature using data from fMRI BOLD [170, 171] and
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NiRS techniques [172]. The concept of adding HRF to a resting state signal and simulat-
ing brain activation with an experimental paradigm is well understood [168, 172, 173].
The HRF varies considerably in different tasks so, any accurate model would depend on
the specific experimental protocol. For illustration, we use the HRF model in [170], i.e.,

y(n) = b1n
n1e−n/m1 − a2b2n

n2e−n/m2 ,

bi = 1/max
(
nnie−n/mi

)
.

(5.10)

Where y(n) is the HRF time series. The convolution of y(n) with the boxcar function
of the stimuli paradigm, u(n), i.e.,

sHRF(n) = y(n) ∗ u(n). (5.11)

This will give us the haemodynamic response time series, sHRF(n). Then, the amplitude
of sHRF, aHRF, should be set before we add it to the modelled signal.

It is also reported that systemic parameters like HR and BR change depending on the
task [174]. This can easily be implemented in the present model by allowing time-varying
parameters for Hmean and f2 synchronized to the sHRF signal.

The final model of the synthetic NiRS signal depends on a total of 25 tunable pa-
rameters: sampling frequency, six variables for constructing P (f) in (5.2), heart rate
parameters, rSD ratio, two reflected wave parameters, noise power, four parameters for
determining K, A and φ in (5.8), two amplitude parameters in (5.1) and six parameters
for the haemodynamic response.

5.4 Parameter Estimation

In this section we discuss parameter selection for our proposed model. For parameters
considered in the literature we give reported values. In addition, the T1 dataset is used
to calculate parameter values, see Table 5.1.

5.4.1 Measuring Power Parameters

An adequate amount of noise power, σ2
n, needs to be selected to obtain a realistic model.

For this purpose, we use a signal-to-noise ratio factor. For our in vivo signal, we define
the noise factor as follows. Knowing the heartbeat frequency, the arterial pulsation signal
is extracted with an infinite impulse response (IIR) bandpass filter with a bandwidth of
0.4Hz centred around the heart rate. The power of the resulting signal is called PAP.
Another IIR filter is applied to the frequency band of 6-12Hz under the assumption that
this spectrum only contains WGN. The output signal power is called PGN. Then, we
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Table 5.1: Model Parameters

Parameter Literature T1 E1/E2
Device fs(Hz) — 39.0625 39.0625/10

AP

f1(×10−2Hz) 10 [168] [11, 10, 95, 98, 10] 10
f2(×10−2Hz) 25 [168] [32, 27, 22, 22, 24] personalized
c1 (×10−3) c21

c22
= 0.5 [157] [28, 32, 28, 24, 32] 29

c2(×10−3) [30, 30, 26, 25, 33] 29
σ1(mHz) 10 [157] [25, 34, 18, 35, 33] 29
σ2(mHz) 10 [157] [25, 36, 21, 29, 30] 29

aAP — 0.01 0.01/3
Hmean(bpm) 70 [168] [76, 71, 71, 68, 73] personalized
Hstd(bpm) 5.0 [157] [3.5, 4.8, 4.0, 3.3, 4.4] 5.0
aRW(%) — [35, 15, 30, 20, 15] 30/NA

Trefl (×10−2s) — [22, 12, 19, 5, 5] 20/NA
rSD — [0.4, 0.4, 0.6, 0.5, 0.6] 0.60/0.56

WGN σ2
n (×10−5) — [2.6, 18.7, 1.6, 0.9, 9.8] personalized

LF

K — 100 100
A — U [−1, 1] U [−1, 1]

f1(Hz) — 0.01 0.01
f2(Hz) — 0.09 0.09

aLFC (×10−2) — [24, 4, 3, 2, 8] personalized

HRF

n1 5.0 [170] NA 4.0
n2 12.0 [170] NA 12.0
m1 1.1 [170] NA 1.2
m2 0.9 [170] NA 0.9
a2 0.35 [170] NA 0.4

aHRF 1%-5% [173] NA NA/3%

define the AP SNR factor as:

QAP = 10 log10
PAP
PGN

. (5.12)

Finally, the model parameter, σ2
n is set to achieve the required QAP value.

In order to set aLFC to a realistic LF component signal power in our model, we use
the same power-ratio strategy as (5.12). Using the T1 dataset, an IIR bandpass filter
is applied to the frequency band of 0.01-0.26Hz (i.e., the LF band) to obtain a signal
power of PLFC; then, the SNR factor for the LF signal is defined as:

QLFC = 10 log10
PLFC
PGN

. (5.13)

After an appropriate value is set for QLFC, a non-linear least-squares minimization prob-
lem is solved to find the right aLFC for the LF components.

5.4.2 Overall Parameter Selection

The resting state model parameters are summarized in Table 5.1, in which the values
suggested by the literature are compared to the measurements from the T1 dataset.
The differences between the reported values for c1, c2, σ1 and σ2 of the AP signal
are presumed to be the result of differences between ECG and NiRS signals. The last
column of Table 5.1 provides an idea of the range of values one can use to run the
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model. The E1 column of Table 5.1 is a combination of published parameter values
and T1 measurements, which we will use to generate an E1-equivalent dataset using
the model. We have not mentioned any default values for four of the major parameters
in the model. These parameters have either subject-specific or channel-specific values,
referred to as personalised in the table and should be selected for each individual run of
the model.

5.5 Model Validation

In this section we will first illustrate a sample model output for visual comparison then
use an entropy estimate to statistically compare the similarities between the model
output and measured NiRS recordings in resting state using the E1 dataset. Finally, we
will evaluate model outputs by comparing them with a task-included dataset.

Figure 5.3 shows an example where an in vivo NiRS recording is compared with its
synthetic equivalent in time and frequency domains.

5.5.1 Validation Tool

Here, we use cross-fuzzy entropy (CFEn) as our validation tool for the assessment of
model outputs. CFEn is a measure of synchrony or regularity between two time-series.
CFEn is used here to measure the similarity between our model output and in vivo
data. CFEn is the negative natural logarithm of the conditional probability that the two
sequences which are similar for m points will remain similar for m+1 points. Cross fuzzy
entropy was developed by [175] and then generalized in [176] by modifying cross sample
entropy [177] and avoiding the two-state classification of similarity by the Heaviside
function. Instead, cross-fuzzy entropy uses a fuzzy function to associate a membership
grade for the similarity of two vectors. We denote the cross-fuzzy entropy of two time
series u = [u1, u2, . . . , uN ] and v = [v1, v2, . . . , vN ] each with unit variance and N equally
spaced time samples as CFEnvu(m, r). Here, m is the embedding dimension described
above and r is the similarity tolerance factor.

In order to use CFEn as a validation tool for our model, we first choose the appropriate
parameters for this entropy measure and then run different simulations comparing the
model output and in vivo signals. The embedding dimension, m, determines the length
of the sequences to be reconstructed. To have a sensible approximation it is advised
to have 10m ≤ N ≤ 30m, N being the number of samples [175, 178]. Considering
the sampling frequency and acquisition period described in 5.2, we will set m = 3 for
all our analyses, which is similar to the approach taken in [176] for analysing an EEG
dataset. In all entropy estimations like approximate entropy, cross sample entropy and
cross-fuzzy entropy, r is recommended to be 0.1− 0.3 times the data std [176, 177, 179].
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Figure 5.3: Visual comparison between sample channel from E1 and its synthetic
NiRS equivalent. (a), (b) and (c) show an in vivo recording, synthetic-equivalent and
frequency-domain comparison, respectively. The frequency domain signals are calcu-
lated using one-minute-long time domain signal. Parameters σ2

n, aLFC, Hmean and
BR are measured as 2.2×10−5, 0.05, 80bpm and 0.22Hz respectively. All the other

parameters are set to their default E1 values as per Table 5.1.

Since in cross sample entropy the data is normalized to a unit std, we will set r = 0.2

as per [177].

5.5.2 Validation Using CFEn

For entropy-based validation, we first create a self-similarity index, ρ̌, for each individual
channel from E1. Then, we compare ρ̌ to that of synthetically produced equivalents, ρ.

Let ši for i = 0, 1, . . . , 758 represent all the channels with a source-detector distance
of 2 − 5cm from our E1 dataset described in Section 5.2. In order to calculate a self-
regularity index for the channels, we divide each five-minute long ši sequence into 5
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one-minute sequences of ši,j for j = 1, . . . , 5. Then, we define

ρ̌i = min
j∈[2,3,4,5]

CFEnši,1ši,j (3, 0.2), (5.14)

as a measure of self-regularity for each channel. Analysing the data based on the chosen
CFEn parameters and NiRS signal characteristics, we exclude the channels with self-
regularity indexes, ρ̌, greater than 0.7. Note that a higher regularity index indicates
lower self-similarity within channels. This leaves us with n = 157 channels for model
validation.

For case I, using QAP, QLFC, HR and BR information for each channel we produce a
one-minute-long synthetic equivalent signal using our model. Let

ρi = min
j∈[2,3,4,5]

CFEnsi ši,j (3, 0.2), (5.15)

where si is the model output corresponding to the inputs for i = 0, 1, . . . , n channels.
The second CFEn elements will be the same recorded sequences as in (5.14).

Figure 5.4a shows ρ plotted against ρ̌ for case I. Since we generated the synthetic
equivalent signals based on whole 5-minute-long in vivo sequences, we expect to see
higher similarity and a lower regularity index, between some of the synthetic and in vivo
signals compared to the within-channel similarity measures. These are the channels that
fall below the equal-regularity line in Fig. 5.4.

In order to demonstrate the practicality of using cross-fuzzy entropy in assessing NiRS
data similarity, we run an additional set of simulations (case II), where we randomly
compare in vivo measurements. That is, for the same ρ̌i in (5.14), the corresponding
ρi is calculated as the minimum cross-entropy between all the one-minute segments of
channel i compared with a random one-minute recording of another channel. The result
is shown in Fig. 5.4b where most of the points show low similarity and fall over our
0.7 CFEn threshold. That is, we show that the similarity between the synthetic signal
and the in vivo signal it models is significantly higher than the similarity between two
separate in vivo signals.

Finally, we perform a statistical test to show the significance of equivalence between
synthetic signals and in vivo measurements. To maintain the independence of samples
we only use one randomly selected single channel per subject, as illustrated in Fig. 5.4a.
The equivalence margin, δ, is set to 0.15. The value of δ is chosen based on 1) the
within-channel EEG CFEn values reported by [176] as an external reference of CFEn
variability in biomedical signals and 2) the within channel NiRS CFEn values calculated
using our dataset. The equivalence tests were performed in the form of two one-sided
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Figure 5.4: CFEn regularity index for (a) Case I, simulated vs in vivo and (b) case
II, random in vivo vs in vivo. Filled circles in (a) indicate a single randomly chosen

channel for each subject.

t-tests (TOST) with the null hypothesis:

H0 : µρ̌ − µρ < −δ or µρ̌ − µρ > δ, (5.16)

where µ indicates the population mean [180]. The null hypothesis was rejected for case I
(p < 0.001), showing that the model outputs are as equivalent to the in vivo recordings
as a later set of recordings on the same channel.

5.5.3 Incorporating HRF Data in the Model

In order to show the utility of our model in the presence of stimuli, we used a dataset
from [181] that is available online at [182]. We refer to this dataset as Experiment 2
(E2). It was obtained from a single participant performing a finger-tapping task. The
total recording time was 756s, where the task and rest periods were ∼10s and ∼20s,
respectively, with 20 task repetitions. The NiRS device used in the experiment was a
Hitachi ETG-4000 with 24 channels and light sources of 695nm and 830nm wavelength
operating at a 10Hz sampling frequency. Note that E2 has only been used here for its
HRF component and that functional NiRS or HRF are not the key interests for this thesis
and rather the AP component is used here to study vascular health. Measured parameter
values for E2 are reported in Table 5.1. Note that the reflected wave information could
not be extracted due to the low sampling frequency. A sample 695nm-wavelength channel
from E2 was selected, which reflects the underlying activation due to the stimulation
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(see Fig. 5.5a). To process both the in vivo and synthetic signals we first extracted the
haemodynamic responses to the stimuli by applying a bandpass filter at 0.01-0.2Hz and
then averaging it with respect to the stimulus onsets (see Fig. 5.5b). Then, an equivalent
synthetic haemodynamic response was generated using the E2 HRF values in Table 5.1
and stimuli onset and offset information from the database. The synthetic HRF response
was added to ten different synthetic signals generated with values presented under the
colum heading E2 in Table 5.1 plus f2, Hmean, σ2

n and aLFC set to 0.27Hz, 86bpm, 0.059
and 1.42, respectively. Note that E2 dataset is in optical density units and the difference
between E1 and E2 aAP causes the differences in power parameters. Now, to extract
the haemodynamic response from the synthetic signals, the same filtering and averaging
process as used with the in-vivo signal was applied. The extracted HRF is shown in
Fig. 5.5b.

5.6 Synthetic Signal and Vascular Health Indices

In this section we aim to calculate different cerebrovascular health indices using synthetic
NiRS signals. To this end, we first introduce a new automatic NiRS peak detection
algorithm to locate the systolic and reflected peaks in the NiRS signal. This algorithm
can then be used to calculate health indices from synthetic and in vivo NiRS signals.

5.6.1 NiRS Peak Detection

Here we propose an algorithm for automatic detection of the forward and reflected NiRS
peaks i.e., tsys and trefl, respectively. For a given signal, s, the proposed algorithm uses
the second derivative to locate key points in the signal. This is based on similar ap-
proaches that have been proposed for locating inflection point in the pressure waveforms
[110]. After preprocessing; i.e., averaging, filtering and rotating the signal around the
x-axis (to give the reflected-wave peak and systolic peak positive values), the second
derivative of s (s2) is calculated. Next, the following time points are defined on the s

and s2 signals: {tp1, tp2, ...}, the time of the peaks on the s signal and {tzc1, tzc2, ...} the
time of zero-crossings on the s2 signal. If the number of s2 zero-crossings is less than 4,
the channel is excluded. Otherwise,

tsys = min (tp1, tzc2) . (5.17)

Then, to define trefl the algorithm only checks the time period between tzc3 and tzc4.
If s has a positive peak, trefl is set as the time point corresponding to this peak (tpi).
Otherwise, it is set as the time when s2 reaches its minimum, tmin (all within the specified
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Figure 5.5: In vivo, sample synthetic signal with stimulation and haemodynamic
response in red, blue and green, respectively. (a) Time-domain signal with vertical
lines showing stimulus onsets and (b) averaged signals with grey area showing the

activation period.

time period between tzc3 and tzc4). That is:

trefl =

tpi if s contains a positive peak

tmin else
. (5.18)

Then, we calculate the timing index as:

TINiRS =
1

trefl − tsys
. (5.19)

Examples of the use of the proposed algorithm are shown in Fig. 5.6. It shows the algo-
rithm applied to in vivo (left column Fig. 5.6) and theoretical summation signals (right
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column of Fig. 5.6). Three main types of AP signals, s, are shown in this figure where
the detected tsys and trefl values correspond to either a peak point or an inflection point
on the recorded signal. The theoretical summation signals are formed by adding three
waveforms: 1) an incident forward-travelling waveform 2) a reflected waveform and 3) a
re-reflected waveform (which is also travelling towards the periphery). The purpose of
the theoretical summation signals is to better visualize where the underlying waveforms
reach their peak and how the algorithm performs in terms of detecting the peak times.
For each theoretical summation case the underlying waveforms are arranged so that the
resulting observed signal (black lines on the right column of Fig. 5.6) resembles an in
vivo case (left column of Fig. 5.6).

At this stage, we have developed a mathematical model of the NiRS signal and in-
troduced an algorithm for the automatic detection of the systolic and reflected peaks in
an averaged NiRS signal. Now, we aim to examine the effects of system parameters on
the accuracy of the peak detection algorithm. Further, we will use the same model to
examine the application of AI and PI indices in the context of the NiRS signal.

5.6.2 Effects of Signal Parameters on Reflection Time Measurement
Accuracy

Case I

For this case, we generated the simplest form of NiRS signal, in which only Trefl values
change with age. This case will provide an indication of the performance of the proposed
peak detection algorithm and a baseline for comparison with other cases.

Model Inputs: The sampling rate, fs, was set to 100 to obtain smooth results.
Parameters f1, c1, c2, σ1 and σ2 were set to the default values in Table 5.1. Signal
amplitude, aap, was set to 1 for easier visualization and wherever E1 data is involved
in this section it was scaled accordingly to match the signal amplitude used here. All
the LF parameters except aLFC were set to default values. An HRF was not considered
in this section. Other inputs were set as follows: f2 (breathing rate) = 0, Hstd = 60,
σ2
n = 0, aRW = 10% and rSD = 0.5. See Table 5.2 for the list of values used for the

input variables. In order to model changes in Trefl with age, we used the Formula 3.12
which calculates Trefl based on R, C, Z0, PWV and d0, which we will refer to as the
secondary inputs. We set the secondary inputs similarly to Section 3.3.2 (where they
were used to simulate the reflection time of the radial blood pressure signal). However,
to adjust for secondary input variable changes from the radial artery to smaller cerebral
vessels, we multiplied R, C, Z0, PWV and d0 by the factors of 8, 0.6, 1.5, 1.2 and 0.5,
respectively. These numbers may not accurately describe the arteries that the NiRS
technique acquires signals from; however, they result in a similar range of Trefl values
that of the in vivo NiRS signals (in the next chapter, the in vivo TINiRS values will be
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Figure 5.6: Three main types of in vivo AP signals (left column) and equivalent sim-
ulated signals (right column). Black lines represent observed blood volume signals (s)
and the red lines are their second derivatives (s2). Grey lines represent the underlying

forward, reflected and re-reflected waveforms.
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discussed in greater detail). Besides, values for the secondary inputs that match the
NiRS recordings, which also depend on the measurement location, are not reported in
the literature nor is it clear how smaller arteries and arterioles contribute to the NiRS
signal. The age values were set to vary from 20 to 80 years, which resulted in Trefl

values (digitized at 10ms sampling intervals) that ranged from 120-350ms (see Fig. 3.2b
for simulated Trefl changes for men and women in the radial artery).

Results: Since no randomness was included in this case, two simulations were run
for each integer age value one for male and one for female inputs. That is, a total of
122 90-second-long NiRS signals were produced. The signals were averaged using the
diastolic points and rotated around the x-axis, then were input to the peak detection
algorithm without any bandpass filtering. The Trefl values were detected correctly in
92.6% of the waveforms and the mean squared error (MSE) for this case was 6.6(ms)2

(see Fig. 5.7a).

Case II

This case includes all the input variables except WGN (no bandpass filtering was used
in the preprocessing step). The model inputs are the same as those used in case I except
that f2 (breathing rate) was set to a uniformly distributed number between 12 and 20
breaths per minute. The HR was set based on reported resting HR data; see Fig. 5.8
[183]. Hstd was set to the default value of 5bpm based on Table 5.1 and rSD was set to
0.6. aLFC was selected randomly from E1 for each simulation. See Table 5.2 for the list
of values used for the input variables.

Results: 122 random waveforms were generated for different ages and genders. The
waveforms were averaged and input to the peak detection algorithm. The accuracy of
Trefl detection and the Trefl MSE were 61.5% and 37.5(ms)2, respectively (see Fig. 5.7b).

Case III

For this case, WGN was added to the parameters used in case II. After selecting random
samples from E1 for each simulation, their aLFC and σ2

n values were used to generate a
synthetic signal. aRW was set to linearly increase from 25% to 40% for the age range of
20 to 80 years.

Results: 225 random waveforms were generated and bandpass filtered at 0.5−6.5Hz

before averaging. A sample synthetic NiRS signal for this case is shown in Fig. 5.9 in
different stages of construction and processing. The MSE for this case was 266.4(ms)2;
i.e., a mean ≈17ms error, which is less than the sampling interval used in both in-vivo
datasets in this chapter. The results for this case are shown in Fig. 5.5.



A Mathematical Model of the NiRS Signal 69

20 25 30 35 40 45 50 55 60 65 70 75 80
100

150

200

250

300

350

Age

Tr
ef

(m
s)

Case I

(a)

20 25 30 35 40 45 50 55 60 65 70 75 80
100

150

200

250

300

350

Age

Tr
ef

(m
s)

Case II

(b)

20 25 30 35 40 45 50 55 60 65 70 75 80
50

100

150

200

250

300

350

400

Age

Tr
ef

(m
s)

Case III

(c)

Figure 5.7: Simulation results for (a) case I, (b) case II and (c) case III. Green circles
and blue squares show simulation outputs for men and women respectively. Red circles

and squares show input Trefl values for men and women, respectively.
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Figure 5.8: Resting-state HRs reported in [183] for men and women in blue and red
diamonds, respectively. The blue and the red lines show interpolated HR values for
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Table 5.2: Model parameters used in Section 5.6.2

Parameter Case I Case II Case III Case IV Case V Case VI
Device fs(Hz) 100 100 100 100 [25− 125] 100

AP

f1(×10−2Hz) 10 10 10 10 10 10
f2(×10−2Hz) 0 U [20, 33.3] U [20, 33.3] 26.7 26.7 U [20, 33.3]
c1 (×10−3) 29 29 29 29 29 29
c2(×10−3) 29 29 29 29 29 29
σ1(mHz) 29 29 29 29 29 29
σ2(mHz) 29 29 29 29 29 29

aAP 1 1 1 1 1 1
Hmean(bpm) 60 Fig. 5.8 Fig. 5.8 75 75 U [60, 100]
Hstd(bpm) 0 5 5 0 0 5
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Figure 5.9: The first cycle of a 90-second synthetic signal before adding LF compo-
nents (WGN) is in green. The reflected waves is also shown in green. The red signal
is the sum of the two green signals, which is the synthetic NiRS signal before noise
was added. The black line is the final synthetic signal before averaging and bandpass

filtering, after which it is represented by a blue line.

Case IV

Here, we will examine the accuracy of the peak detection algorithm when changing the
noise level. All parameters are set to default except aLFC and σ2

n (see Table 5.2 for the
list of used values). A single set of secondary variables from Case I was used which
correspond to a 50-year-old male and result in a fixed Trefl value equal to 200ms. Hence,
given a fixed Trefl value we will change σ2

n from 0.02 to 1 and observe the performance of
the algorithm in detecting systolic and reflected peaks. Note that the range of aLFC and
σ2
n values are different in Table 5.2 and Table 5.1 due to the signal amplitude differences.
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Figure 5.10: First cycle of the synthetic signals before adding LF components, WGN,
and reflected waves (green lines). The reflected wave is also in green and the first cycle
of the clean signal is in red. The signal after adding noise, averaging and bandpass
filtering is shown in blue. The input systolic and reflected peak locations are marked
with red squared. The blue circles show the detected systolic and reflected peaks. (a)
case II, female, age 60 years, input reflection time 130ms, calculated reflection time
120ms. (b) case III, female, age 28 years, input reflection time 210ms, calculated
reflection time 190ms. (c) case III, male, age 51 years, input reflection time 200ms,
calculated reflection time 180ms. (d) case III, female, age 78 years, input reflection

time 120ms, calculated reflection time 140ms.

Results: Five equally-distanced σ2
n values between 0.02 and 1 were chosen and

30 waveforms were generated for each unique σ2
n value. This produced a total of 150

randomly-generated waveforms which were then processed as described earlier. The
results for this case are calculated as MSE and shown in Fig. 5.11a.

Case V

In this case, we will examine the accuracy of the peak detection algorithm when changing
the sampling frequency, fs. The sampling frequency is often an adjustable parameter of
the recording device and although low sampling rates will not let us examine the reflected
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Figure 5.11: Case IV and V simulation results. The performance of the peak detection
algorithm is measured with MSE as noise level (Case IV) and sampling frequency (Case

V) change.

waves, the high sampling rates will also result in unwanted data points and huge data
files. All input parameters except fs are set similarly to Case IV (see Table 5.2 for
the list of used values) which correspond to a fixed Trefl value of 200ms. The sampling
frequency was changed between 28 and 125Hz. It is common for commercial NiRS
devices to operate in sampling frequencies lower than 25 samples per second, however,
we were unable to access the performance of the peak detection algorithm for fs < 25Hz

because of the limitations in the synthetic signal model. That is because the model uses
the frequency band of 6-12Hz for WGN analysis.

Results: Fifty random waveforms with fs = 500 were created and then each down-
sampled by factors of 4 to 18 to generate a total of 750 waveforms for analysis. Each
waveform was processed as described earlier and fed to the peak detection algorithm.
The MSE values were calculated for the results and are shown Fig. 5.11b.

Observations

In the simulation results shown in Fig. 5.7 there is a tendency to underestimate the
reflection time. Here, we provide sample signals for each case in which the model un-
derestimates (Figs 5.10a, 5.10b and 5.10c) or overestimates (Fig. 5.10d) the reflection
time. These samples are not from the simulation sets reported earlier but they were
generated in the same way. The averaged signal systolic peak is dislocated as a result
of WGN and HR variability, with Hstd set to 5bpm for cases II and III (i.e., all the
detected systolic peaks matched the individual systolic peaks of the signal in case I).
The location of the reflected peak is affected similarly by the WGN and HR variability
and also by summation with the incident wave. Generally, the slope of the incident wave
when added to the reflected wave makes the final reflected peak appear closer to the
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systolic peak. This is the case in Figs 5.10a, 5.10b and 5.10c when the systolic peaks
are aligned between the single cycle (red) and averaged signal (blue). Other factors,
such as filtering may result in dislocating the peaks, especially in older subjects where
the reflected peak is closer to the systolic peak and is larger in amplitude and filtering
softens the waveform (see Fig. 5.10d).

As expected, the results for Case IV (shown in Fig. 5.11a) confirm that increased noise
level reduces the accuracy of the proposed peak detection algorithm in locating systolic
and reflected peaks. Case V results, as shown in Fig. 5.11b, indicate that increased
sampling frequency reduces the peak detection error. This is explained by more intense
detail recording in higher sampling frequencies.

5.6.3 Effect of Changes in HR and Age on Calculated TI and AI Indices

This section discusses TI and AI changes with age and HR in a simulated dataset.

Case VI

For this case the input variables are similar to that of case III, except that only a single
random value was selected for aLFC and a single value of σ2

n was used for all the simulated
signals. The HR was selected randomly between 60 and 100bpm (a uniform distribution
was used), which is the clinical range for normal resting HR [184]. Setting random
fixed values for aLFC and σ2

n helped us better visualize the age-related and HR-related
changes in TI and AI. After using the peak detection algorithm, TI was calculated using
Equation (5.6.1) and the near-infrared spectroscopy augmentation index (AINiRS) was
calculated in a similar way to Equation (3.13); i.e.,

AI = s(trefl)− s(tdia)

s(tsys)− s(tdia)
, (5.20)

where tsys and trefl are as defined in Section 5.6.1 and tdia is the end-diastolic point on
the averaged and rotated NiRS signal; i.e., the AP signal.

Results: The results for 400 randomly-generated signals are shown in Fig. 5.12. The
results confirm the validity of Equations (3.12) and (3.19), which were the main contri-
bution of Chapter 3. They match the results from the literature, as discussed in detail in
Section 3.5. As shown in Fig. 5.12, AI is negatively correlated with HR (similar results
were reported in [137]) and positively with age (see Table 2.2 for related literature).
Furthermore, from Fig. 5.12b, we notice that the curve describing the relationship be-
tween AI and age becomes less steep at ages above 55 years. Similar trends have been
reported in the literature [2, 111, 123]. On the contrary, TI does not show a noticeable
change with HR, which was proven mathematically in Chapter 3 (see (3.12) and see
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Figure 5.12: Case VI simulation results. Red lines show least-squares second-order
and first-order polynomials fitted to the age and HR data, respectively.

[107] for similar published results). The TI shows a similar flattening curve as AI (see
Fig. 5.12a), which has also been reported in the literature [46, 106, 115].

5.6.4 Measuring PI in a NiRS Signal

We defined PIs for TCD and MRI signals in Equations (2.23) and (2.27), respectively.
Here, we want to evaluate the possibility of calculating a pulsatility index for NiRS
signals. In an unprocessed NiRS signal the mean value does not correspond to blood
volume changes unlike TCD and MRI where the mean value shows the mean blood
flow velocity and mean blood flow, respectively. As discussed in Section 5.3.3, VLF
components and Mayer waves at 0.1Hz and lower frequencies influence the NiRS signal
independently of the mean blood volume value. This means that in an unfiltered signal,
the NiRS signal’s mean value varies considerably, making the the peak-to-mean ratio also
change considerably. Filtering the NiRS signal, which is a common processing step and
removes the LF components, sets the signal mean to zero and again the peak to mean
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ratio becomes meaningless. Therefore, the pulsatility index in its current definition can
not be applied to a NiRS signal to acquire meaningful information.

5.7 Discussion

Assumptions were made to build our simplified NiRS signal model. The key assumptions
made in this chapter were as follows.

• The frequency drifts of the AP signal had the same characteristics as the ECG-RR
interval signal. This assumption holds based on 1) the nature of the AP signal
discussed in Section 5.3.1 and 2) the analysis done by [10, 86] which considered
simultaneous ECG and NiRS measurements.

• The effects of Mayer and respiratory amplitude changes on the signal amplitude can
be modelled by a Gaussian function in the frequency domain. This assumption is
based on the inherent natural behaviour of the physiological phenomena. A similar
assumption is made in [157] in modelling the frequency drifts of components of the
same signal.

• Mayer, respiratory and VLF waves can be combined into a single component (i.e,
the LF component) and described with a single amplitude parameter, aLFC. Our
data analysis shows that a good level of accuracy can be achieved with this method.
However, simultaneous ECG, respiration and NiRS monitoring can help to better
understand these components and, possibly, to separate them.

• We assumed that the frequency drifts and amplitude changes caused by the Mayer
and respiratory waves are not synchronized. Therefore, different realizations of θ
in Equation (5.3) were used for each component. This assumption was made as the
nature of these components has not yet been explored in terms of NiRS signals.

In Section 5.6, we introduced a new NiRS peak detection algorithm which was then
applied to synthetic signals for the calculation of Trefl, TI and AI. The model is able to
simulate TI and AI changes with age and HR that match in vivo results reported in the
literature. Nonetheless, the simulations were limited by the knowledge of the secondary
inputs; i.e., R, C, Z0, PWV and d0. These inputs were set based on the information
provided in Chapter 3; however, they were multiplied by certain values to adjust for
changes that the NiRS signal may have. The secondary inputs were used to calculate
reflection times which had the same trend as shown in Fig. 3.2 for the radial artery.
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5.8 Conclusion

In this chapter, we proposed a NiRS signal model. The model includes LF elements,
AP, reflected waves, Mayer and respiration waves. Appropriate default values based
on recorded NiRS data analysis and the literature were proposed. A new NiRS peak
detection algorithm was introduced and synthetic NiRS signals were generated by the
model resembling a wide age change in the data. Using the proposed peak detection
algorithm reasonable accuracy was demonstrated in calculating reflection times using the
NiRS signal. Further, the calculated TI and AI values showed similar correlations with
age and HR as have been reported in the literature. These promising results obtained
using synthetic signals motivated us to apply the timing index to NiRS measurement in
a clinical study.



Chapter 6

Indexing Cerebrovascular Health
Using NiRS

6.1 Introduction

In this chapter, we use the transmission line (TL) model of Chapter 3 and the TITCD
index proposed in Chapter 4 along with our understanding of the NiRS signal discussed
in Chapter 5 to propose a new timing index for NiRS. The new index is then calculated
in a sample of 38 participants and compared with the existing PReFx index in terms of
correlations with age, CRF, AITCD and PIMRI.

Cerebrovascular compliance is commonly assessed non-invasively using indices derived
from blood pressure and flow readings. TCD ultrasound and MRI are the modalities
most widely used to acquire cerebrovascular compliance and cerebrovascular health in-
dices. While it is possible to estimate compliance using TCD blood flow velocity [73],
the method relies on estimates of vascular cross-sectional area, arterial inflow and ve-
nous outflow, which are not readily measurable. The TCD indices, such as PITCD and
AITCD, are the preferred TCD cerebrovascular health indicators [53, 54, 145]. Of these
two, PITCD is the most commonly used TCD index due to its ease of calculation. How-
ever, AITCD has been shown to have a stronger correlation with cerebrovascular health
indicators such as age and CRF [185]. PIMRI is the commonly adopted MRI-based cere-
brovascular health measure [74]. While PIMRI has a high spatial resolution for localized
measurements, MRI is less commonly used as it is both costly and time-consuming,
making it unsuitable for simple and routine monitoring of vascular health in the general
population.

NiRS is a relatively new technology that measures regional blood volume changes
based on absorption of NiR light, mainly by oxygenated blood inside cerebral arter-
ies [10, 11]. NiRS offers high temporal resolution and is sufficiently sensitive to detect
changes in blood volume during the cardiac cycle. Therefore, NiRS allows local studies

77
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of cerebrovascular behaviour and possible assessment of cerebrovascular health [10]. The
recently proposed PReFx is the first NiRS-based approach to the indexing of cerebrovas-
cular compliance [10]. PReFx measures the deformation of the blood volume waveform
during the systolic relaxation phase due to the presence of reflected waves. It has been
demonstrated to correlate with CRF and inversely correlate with age [10, 86, 91]. PReFx
is an area measurement in the averaged NiRS signal. The PReFx algorithm assumes
that the first positive peak after the diastolic minimum is the systolic peak, which may
not be the case when the systole reaches its maximum in an inflection point rather
than a peak. Therefore, we are motivated to use an index that can be easily applied
to NiRS signals. In Chapters 3 and 4, we showed that the TI is a strong predictor of
vascular health based on both blood pressure and blood flow velocity measurements and
reported significant correlations between TI and vascular health factors such as age and
CRF. In Chapter 3 we showed that based on a tube-based model of the arterial tree, the
TI is directly controlled by the vascular ageing factors including compliance, resistance
and PWV [154]. As such, we propose a new near-infrared spectroscopy timing index
(TINiRS) to directly measure the timing of reflected waves. Here, we define the TINiRS
as the inverse of the time interval between the systolic and reflected waveform peaks in
the NiRS signal.

6.2 Methods

6.2.1 Protocol and Data Collection

Thirty eight adults (23 female, 15 male, age range = 24-67 years, mean age = 41.7 years)
were recruited from the Newcastle, Australia. They provided informed consent prior to
assessment. The study protocol was approved by the University of Newcastle Human
Research Ethics Committee and is registered in the Australian and New Zealand Clin-
ical Trials Registry (ACTRN12619000144112). Each participant attended the Hunter
Medical Research Institute and the University of Newcastle Callaghan campus over two
consecutive days and participated in three scanning sessions. Participants were asked
to refrain from consuming caffeine before their scans. Height, weight, age, sex and rest-
ing HR were recorded for each participant and a physical activity questionnaire was
completed.

TCD ultrasound (DopplerBox X; Compumedics DWL, Singen, Germany) was used to
record resting-state cerebral blood flow velocity from the right and left MCAs. Partici-
pants were also scanned on a 3T MRI scanner (Magnetom Prisma, Siemens Healthineers,
Erlangen, Germany) equipped with 64-channel receive only head coil, while a standard
built-in dual channel body coil was used for RF transmission. Blood flow was quantified
using a phase contrast flow quantification sequence (TR = 26.5ms, TE = 6.9ms, slice
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thickness = 5mm, matrix 256 × 256) of a single excitation with a velocity encoding
value of 120cm s−1 on the MCAs [147]. Finally, participants were instructed to relax
and sit still for 300 seconds of resting-state NiRS recording. A frequency-domain NiRS
(ISS ImagentTM, Champaign, Illinois, USA) was used at a 110MHz modulation fre-
quency and sampling rate of 39.0625Hz. The set-up montage covered the frontal lope
and consisted of four detectors each crossed with 16 time-multiplexed sources (eight of
which operated at 690nm and the other eight at 830nm), making a total of 64 channels.
Participants were asked to wear an Equivital EQ02 LifeMonitor sensor belt during this
session, which recorded ECG and NiRS signals simultaneously.

During the TCD imaging session, resting-state HR was measured using an HR monitor
device (Omron HEM-7320). Participants assumed a sitting position for approximately
five minutes during headpiece set-up before recording commenced. During TCD record-
ing, the HR was measured once per minute for three minutes. The mean of these three
HR measurements was used as the resting-state HR.

6.2.2 Calculating The Indices

6.2.2.1 PIMRI

MRI phase contrast (PC) images were processed using the scanner software (Siemens
Syngo) by manually placing a region of interest around the image of the MCA and
quantifying the flow. The PIMRI was then obtained by subtracting the minimum flow
from the maximum flow and dividing it by the mean flow over the cardiac cycle [74],
i.e.,

PIMRI =
Qmax −Qmin

Q
, (6.1)

where Q indicates the flow and the bar sign indicates the mean value, as previously
mentioned in Equation (2.27). Three subjects did not have an MRI scan and among the
remaining subjects, PIMRI was calculated either for both MCAs (n = 21) or for just a
single MCA (n = 14) based on data quality. The indices from right and left MCAs were
then averaged for each subject.

6.2.2.2 AITCD

Calculation of AITCD requires identification of three characteristic points on an averaged
Doppler waveform. Peak systole (Vsys) peak diastole (Vdia) and the peak of the reflected
wave (Vrefl) are the parameters required to calculate the augmentation index [53]:

AITCD =
Vrefl − Vdia
Vsys − Vdia

. (6.2)
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Thus, the timing of the diastolic peaks was first determined automatically in Matlab®

using a peak detector function. Then, each signal was averaged with respect to its dias-
tolic peaks, resulting in an averaged signal covering the duration of a single cardiac cycle.
The systolic and reflected peaks were set manually on the averaged signal. The TCD
data for two subjects were excluded from analysis due to noise. AITCD was calculated
using data from both MCAs (and averaged) for 34 subjects and from a single MCA two
subjects, depending on data quality.

6.2.2.3 Evaluating CRF

CRF was determined using the non-exercise test model proposed in [151]. It involves
a self-reported physical activity score, age, sex, body mass index and resting HR. See
Table 4.1 and Equation (4.4) for the physical activity questionnaire and CRF formula,
respectively.

6.2.2.4 NiRS Indices

Two different indices were derived from the NiRS recordings: the pulse relaxation func-
tion (PReFx) and the proposed near-infrared spectroscopy timing index (TINiRS). The
pre-processing of the recordings was done similarly for both methods and was adopted
from [10] using the “p pod” function [186] which is a Matlab-based software module
developed by the same group. Specifically, channels with source detector distances of
2-6cm were selected and went through a quality-control process passing 1283 channels
out of the original 38 × 64 = 2432 channels. These channels were then normalized by
dividing by their mean values and then bandpass filtered to 0.5-5.0Hz. The resulting
signal was averaged with respect to the ECG R peaks and then rotated around the
x-axis (see Fig. 6.1). The result is called the AP signal, s. The rotation was performed
so that the systolic peak would appear as a positive peak and the shape of the signal
would look similar to that of a blood pressure, flow or volume signal. This facilitates
understanding of the waveform. The arterial pulsation signals were visually inspected
and channels that did not have a pulse shape were removed (i.e., low blood volume at
the beginning and end representing diastole, and an increase in-between representing
systole). Some 964 channels passed the pre-processing stage for further analysis.

PReFx: The pulse relaxation function is calculated based on the methods explained
in [10]. In brief, sD1 and sD2 peaks are found as minima in the s signal in the first
and the second cardiac cycles and sS is found as the first local maximum after sD1 (see
Fig. 6.2). {sD1, sD2} and sS are intended to represent the diastolic and systolic peaks,
respectively. However, sS is not necessarily a systolic peak; see Fig.6.2b where sS is the
reflected peak and the systolic peak indicated by an arrow. Then, the area enclosed by
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Figure 6.1: (a) Ten-second long raw NiRS signal (blue) and simultaneously recorded
signal from ECG lead I (red). (b) Averaged and flipped NiRS s signal.
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Figure 6.2: Examples of calculating PReFx for two different s signals. The signal s is
shown in black, the sS, sD1 and sD2 peaks are marked with black circles, and the blue
and red rectangles are formed with sS and sD2 at their diagonals. The shaded area, A,
is the area enclosed by s between sS and sD2 and the red sides of the rectangle. The

calculated PReFx values for (a) and (b) are 0.136 and 0.081, respectively.

the s signal between sS and sD2 is calculated as A and inserted into:

PReFx =
A

B
− 0.5. (6.3)

Where B is the area of a rectangle formed by sS and sD2 at its diagonal ends (i.e. the
rectangle formed by blue and red lines in Fig. 6.2). Note that if the drop in volume be-
tween peaks was linear, PReFx would equal zero. After communicating with the authors
of [10], channels with PReFx value outside the interval of [−0.1, 0.4] were removed and
other channels were manually excluded from the calculations where reflected peaks were
selected by the algorithm (see Fig. 6.2b for an example). A total of 245 additional chan-
nels were removed in this process. Finally, for each subject with more than ten PReFx
values, an averaged PReFx value was calculated as the index of vascular compliance.
We were able to calculate PReFx for 29 of the 38 subjects.
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TINiRS: We defined the timing index as the inverse of the time between the forward
and reflected waveform peaks. In order to find the timing of these peaks, named tsys and
trefl for peak systole and peak reflection, respectively, for a given signal, s, we used the
automated algorithm introduced in Chapter 5. The algorithm uses the second derivative,
s2, to locate key points in the signal and was described in detail in Section 5.6.1. After
all channels were processed for a subject, channels with tsys and trefl outside their mean
±1.5 std or outside a predefined threshold were excluded from further calculations. The
predefined threshold for tsys was any value <125ms and for trefl, it was any value >500ms.
Then, if ten or more channels remained, the mean tsys and trefl values for that participant
were used to calculate the timing index as:

TINiRS =
1

trefl − tsys
. (6.4)

Of the original 38 subjects, we were able to calculate a TI for 32 of them.

6.2.3 Statistical Analysis

Statistical analysis was carried out in Matlab® using the inbuilt corr function. Lilliefors
test of normality with a 5% significance level was used to assess the data distribution.
Age and PIMRI were found to be non-normally distributed (p = 0.0072 and 0.0020,
respectively). All the other distributions were normal. Pearson or Spearman correlation
coefficients were calculated for normally-distributed and non-normally-distributed data,
respectively. False discovery rate correction was used to adjust significance levels with
an initial α = 0.05.

6.3 Results

The correlations of the proposed NiRS timing index and existing NiRS PReFx index
with the indices derived from other imaging modalities, age and CRF are reported
in Table 6.1. Corresponding scatter-plots are shown in Fig. 6.3. Least-squares linear
models have not been provided for cases with small slopes. Significant correlations after
correcting for multiple comparisons are marked with an asterisk. Note that PReFx is
an index of vascular compliance whereas TINiRS is an index of vascular stiffness that
is inversely proportional to compliance. Therefore, the two indices show opposite signs
when correlated with the same factors. The proposed systolic peak and reflected wave
peak detection algorithm for TINiRS detected 228 channels (out of 964 input channels)
with a systolic peak corresponding to an inflection point (mean participant age for these
channels is 42.5 years).
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Table 6.1: Correlation matrix with correlation coefficients (p-values) [95% confidence
interval]. Asterisks indicate statistically significant correlations after correction for

multiple comparisons using a false discovery rate

CRF Age AITCD PIMRI

TINiRS
-0.44* (0.011) 0.53* (0.002) 0.46* (0.010) 0.45* (0.012)

[−0.70,−0.10] [0.23, 0.74] [0.12, 0.68] [0.09, 0.70]

PReFx
0.24 (0.2032) -0.40 (0.0295) -0.26 (0.1729) -0.01 (0.9783)

[−0.16, 0.52] [−0.70, 0.06] [−0.61, 0.13] [−0.41, 0.43]

Table 6.2: AITCD correlation matrix. p-values are not reported

CRF Age AITCD PIMRI

AINiRS -0.21 0.19 0.11 -0.27

6.4 Results for Other NiRS Indices

Although the intention of this chapter was to propose a NiRS timing index, for com-
pleteness, we present the results of the NiRS augmentation index. Using the systolic
and reflected peaks detected by the proposed peak detection algorithm, AINiRS was cal-
culated as per Equation (5.20). The correlations of AINiRS with other vascular health
indicators are shown in Table 6.2 without statistical tests. Based on the discussion in
Section 4.1, AI has some limitations as it correlates with several biological factors not
directly related to vessel properties including sex, heart rate, food intake, hydration
status, height, weight and body composition [2]. The correlation of AINiRS with HR
was studied in Section 5.6.3 using synthetic NiRS signals. These limitations combined
with the higher noise power present in NiRS signals compared to TCD and MRI ones,
explain the low correlations in Table 6.2.

Note that the PI currently defined as the peak-to-peak value divided by the mean value
(e.g., (2.27)), will not produce interpretable results for the NiRS signals as discussed in
Section 5.6.4.

6.5 Discussion

The NiRS indices are designed to measure vascular stiffness which is well correlated with
age [15] and CRF [1]. Thus, a common approach with any vascular index is to compare
its relationship with age and CRF [10, 187] and here we have investigated the same. The
PReFx correlation coefficient reported here for age is consistent with existing studies;
however, the correlation with CRF is lower than previously reported. PReFx correlations
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with age and CRF in the adult population have so far been studied by the same research
group using two different datasets [10, 86]. Reported correlations with age are r = −0.39
(mean age = 69.87 years) [10] and r = −0.43 (mean age = 47.8 years) [86]; a correlation
of r = −0.60, mean age = 58.8 years was reported in [91] for a combination of the two
datasets. Our reported correlation, r = −0.40 (p = 0.030), although consistent with
the previous values, is not significant. Reported correlations with CRF are r = 0.416

[10] and r = 0.32 [86], however, our correlation with CRF of r = 0.24 (p = 0.203)
was not significant. Given that the mean age for our sample is 41.7 years, we suspect
that the PReFx measure has a lower correlation in younger subjects than older ones.
In addition, based on the performance of the PReFx algorithm on the current data,
we have identified two potential sources that can distort the PReFx calculation and
potentially cause lower correlations. Firstly, there are cases where the PReFx algorithm
detects reflected peaks instead of systolic peaks as the sS points. The PReFx algorithm
assumes the first local maximum after the minimum peak, i.e. sS, to be the systolic
peak, which is not accurate when the true systolic peak is in the form of an inflection
point (e.g., see Figs 6.2b and 5.6b). Based on our analysis these cases account for almost
one-fourth of all channels (228 of the 964 studied channels) and are more likely to occur
in older participants in which the reflected wave moves faster and reaches the incident
wave sooner than in younger participants. The second problem occurs in channels with
a notch in the signal after the systolic and reflected peaks, which is most likely caused by
closure of the aortic valve (similar to the dicrotic notch seen in the pressure waveform
[188]). This notch can appear as a large deformation in the signal (see Fig. 6.2a for
an example), which will change PReFx values independently of vascular health factors.
Among the aforementioned two potential causes of low correlation for PReFx, the first
was eliminated in the results reported in Table 6.1 by discarding channels where sS

was assigned to the reflected peak. However, if all the channels are included in the
calculations, it will remove the significant correlation of PReFx with age i.e., r = −0.19.

While no previous NiRS studies have reported a timing index, the correlations of
TINiRS with age and CRF match those of the TCD and pressure waves in Chapters 3
and 4 [154, 185]. The proposed TINiRS shows significant correlations with age (r = 0.53,
p = 0.002) and CRF (r = −0.44, p = 0.011), while the correlations of TITCD with age
and CRF are r = 0.70 and r = −0.79, respectively [185].

Based on a previously proven association between PIMRI and SVD [74], we expect
NiRS indices to correlate with PIMRI (which is an indicator of vascular health). PReFx
showed no significant correlation with PIMRI (r = −0.01, p = 0.978), whereas TINiRS
correlated significantly with PIMRI (r = 0.45, p = 0.012). PIMRI indicates vascular
health by measuring the pulsatility of the blood flow. High pulsatility means that fast-
travelling reflected waves join incident waves and contribute to increased maximum flow
peaks. Similarly, TINiRS reaches greater values when the reflected wave peak is closer
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to the systolic peak and pulsatility is high. PReFx also changes based on the location
of the reflected wave, high PReFx values correspond to channels with high deformation
from a perfect sinusoidal waveform; i.e., the existence of a reflected peak. However, the
presence of a dicrotic notch may also affect the PReFx index by distorting the wave
shape while having no effect on PI or TI. Thus, in channels with a prominent dicrotic
notch, the PReFx may be high while pulsatility is low, which may explain the lower
correlation for PReFx.

TINiRS showed a significant correlation with AITCD (r = 0.46, p = 0.010), while the
correlation of PReFx withAITCD was not significant (r = −0.26, p = 0.173). The
augmentation index is a widely accepted index used in both blood pressure and flow
velocity (TCD) signals, and is a strong predictor of vascular ageing and stiffening [53,
71, 121, 145]. The AI captures the augmentation of the incident wave by the reflected
wave, with smaller values reflecting no augmentation when the arteries are healthy and
the propagation speed is low. TI indexes this delay between the incident and reflected
waves directly, which is why AITCD and TINiRS are significantly correlated. The PReFx
also correlates with AI as larger PReFx values can correspond to late reflected waves
leaving a peak on the systolic-to-diastolic segment of the AP signal and thus increasing
the area under the curve. Nevertheless, the correlation may be weakened when the
presence of a dicrotic notch increases PReFx regardless of the reflected wave.

Overall, NiRS blood volume waveforms are believed to closely resemble changes in
blood pressure [10], which is also supported by the use of NiR light in photoplethysmog-
raphy and its morphological similarity to the arterial blood pressure waveform [11, 189].
Thus, we believe that the proposed NiRS timing index is affected similarly by vascular
health parameters in the same way as the timing index derived from the blood pressure
waveforms [154]. As blood pressure can not be readily measured in cerebral vessels, a
NiRS-based timing index can provide an alternative approach.

6.6 Conclusion

In this chapter we presented a novel NiRS based cerebrovascular stiffness index, TINiRS.
The TINiRS correlates significantly with age, CRF and other cerebrovascular health in-
dices derived from TCD and MRI data, indicating it has high performance in tracking
changes in the cerebrovascular system. The TINiRS offers a potentially valuable means
of indexing vascular health and has superior cost, portability and widespread implemen-
tation potential compared with existing techniques.
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Figure 6.3: Scatter-plots of the correlations with least-squares models fitted. Solid
blue lines show the linear fit and the dashed lines show the 95% confidence interval.
Line equations and confidence intervals have been provided when the correlation is

significant.



Chapter 7

Conclusions and Future Work

7.1 Summary of the Main Chapters

This thesis investigated the non-invasive measurement of cerebrovascular health. Chap-
ter 1 outlined current barriers to effectively assessing cerebrovascular compliance.

Chapter 2 outlined the biology of vascular health and the medical implications of
vascular stiffening (loss of compliance). A background to mathematical modelling of the
vascular system and blood haemodynamics were presented. The various non-invasive
measurements used to survey vascular health were outlined, being pressure, flow velocity
(using TCD) and flow (using MRI).

In Chapter 3, we considered pressure waves and proposed mathematical models of
the wave reflection time (Trefl) and AI. The models are based on both TL and WK
equivalents of the arterial system and help to interpret commonly observed trends in Trefl

and AI, such as the flattening with age and changes in AI according to HR. In particular,
the model gives us insight into the phenomenon known as the “distal movement of the
reflected site”. In this chapter we showed that the wave reflection is more than a round
trip and that the capacitive and resistive properties of vessels beyond the reflection site
can cause a considerable delay in the arrival of reflected waves, which is often interpreted
as an apparent distal movement of the reflection site. The chapter particularly focused
on pressure waveforms, and the proposed model was evaluated using carotid and radial
Trefl and AI values reported in the literature.

The results of Chapter 3 motivated the use of a timing based index of vascular stiffness
for cerebral vessels in which pressure waves cannot be measured directly. In Chapter
4, a new TCD-based cerebrovascular health index, TITCD, was proposed. TITCD is the
inverse of Trefl, for which associations with vascular compliance, vascular resistance and
PWV were demonstrated in Chapter 3. TITCD was calculated for TCD MCA blood flow
velocity data along with the currently used indices of PITCD and AITCD on two different
datasets containing vascular health data such as age, CRF and PIMRI. The new TITCD
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outperformed the existing AITCD and PITCD in terms of correlations with CRF and
PIMRI. It had a similar correlation with age as did AITCD, which was much higher than
the correlation of PITCD with age. In addition, based on data from an aged sample
with high CRF levels, it was hypothesized that, unlike AITCD, TITCD is a predictor of
vascular health independent of age.

In Chapter 5 we considered the suitability of a new imaging technology, near-infrared
spectroscopy, for indexing vascular health. Firstly, a mathematical model of NiRS sig-
nals was proposed. The proposed model incorporates various elements of NiRS signals
such as LF components, AP signals, reflected waves, and Mayer and respiratory waves,
and is capable of producing synthetic personalized NiRS data. The CFEn regularity
measure was used to assess model performance in a resting-state dataset, and synthetic
HRF was added to simulate brain activation and compare it with in-vivo recordings.
The purpose of the proposed model was, first, to provide a ground-truth NiRS signal
that can facilitate the assessment of new and existing NiRS signal processing algorithms.
Second, it can help to better understand the components of NiRS signals to inform the
design of a new NiRS-based cerebrovascular health index. Later in this chapter, we
proposed a NiRS peak-detection algorithm and, using synthetic signals, we examined
the effects of system parameters on the accuracy of the algorithm’s results. Finally, we
used the model and peak-detection algorithm to examine the application of TI, AI and
PI indices in the context of NiRS signals.

In Chapter 6, motivated by the results of Chapter 5, a new near-infrared spectroscopy
timing index (TINiRS) of cerebrovascular health was assessed in a volunteer popula-
tion. It should be mentioned that indexing cerebrovascular health with NiRS is a new
approach. Only a single approach to indexing vascular compliance existed previously,
called PReFx. The TINiRS is based on a similar concept as TITCD, which was intro-
duced in Chapter 4. That is, the inverse of the time difference between the systolic
and reflected peaks. The peak detection algorithm of Chapter 5 was used to locate the
peaks/inflection points on the NiRS signals. The TINiRS showed significant correlations
with other factors of vascular ageing including CRF, age, AITCD and PIMRI, whereas
the existing PReFx index did not.

7.2 Significance

Vascular stiffening is an important health indicator linked with stroke, cognitive decline
and age-related disabilities, making it particularly relevant in aged populations. The
stiffness of cerebral arteries is commonly estimated using an index of blood haemody-
namics. In this thesis, a new timing index (TI) was proposed. Through a TL-based
mathematical model of the arterial system, it was shown that TI is related to both
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PWV (which is the gold standard measure of vascular stiffness in the aorta) and vas-
cular resistance and compliance. The TI was then applied to TCD MCA blood flow
velocity waveforms and showed better overall performance than existing indices (AI and
PI) in terms of correlating with cerebrovascular health indicators. Then, TI was ap-
plied to NiRS blood volume measurements, for which high levels of noise and different
channel-to-channel signal power levels make amplitude-based indices less reliable. The
TI was shown to be significantly correlated with age, CRF and indices derived from other
brain imaging modalities. Our results indicate that TI is a strong predictor of vascular
health and is potentially unaffected by factors such as HR and amplitude fluctuations,
which influence existing indices independently of vascular stiffness. In addition, TI has a
general definition, thereby providing a potential common ground for comparing vascular
health measures across different imaging modalities.

Certain brain imaging devices that measure blood haemodynamics are used to obtain
data from which indices of cerebrovascular health can be derived. MRI and TCD are
the two most commonly used modalities for this purpose, whereas the capabilities of
NiRS in the field of cerebrovascular health were only recently discovered. Unlike NiRS
technology, MRI and TCD are either expensive and importable or operator-dependent.
Therefore, NiRS can potentially overcome the current barriers to the development of
inexpensive, easy-to-use devices for routine cerebrovascular health monitoring. This
requires researchers to focus on the development of more advanced NiRS analysis algo-
rithms. We believe that the proposed NiRS signal model can be an important part of
this process. Also, the algorithms proposed for systolic and reflected-wave peak and in-
flection point detection, and subsequent derivation of the TINiRS along with the existing
PReFx index form a starting point for the development of more advanced NiRS-based
cerebrovascular health measures.

7.3 Future Work

In this section we discuss opportunities for future research based on the topics covered
in this thesis.

The most common TCD index reported in the literature is PITCD. However, for cases
such as cerebrovascular health, AITCD has proven to be a more reliable index. We be-
lieve that one of the reasons for the lower popularity of AITCD in TCD studies is that
although PITCD can be easily calculated and, in many cases is a direct output of the mea-
surement device, AITCD calculation requires the identification of systolic and reflected
peaks (the same points are required to measure the proposed TITCD, see Chapter 4).
Thus, the development of algorithms for automatic and, possibly, real-time detection of
TCD systolic and reflected peaks is very important to the commonplace use of AITCD
and TITCD in the future.
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As discussed in Chapter 4, based on Experiment 1, for which CRF data was avail-
able, we tracked two aged individuals with high fitness levels (see Figs 4.2 and 4.3).
Based on their data, we hypothesized that, unlike AI, which is a stronger age estimator,
the proposed TI can estimate cerebrovascular health independently of age. This is an
important aspect because an ideal index of vascular health would not necessarily be
age-dependent because lifestyle choices significantly affect individuals’ vascular health
over time. Therefore, further experiments on wider age ranges and trained athletes are
required, which should include VO2 Max tests to gain more exact estimates of fitness
levels. This would be useful for testing the independence of the proposed TI on age.

Furthermore, studying TI values on different parts of the brain or in general on dif-
ferent parts of the body would contribute to better understanding of vascular health
changes with ageing and intra-subject variabilities. Such spatial studies on the brain
have already been carried out for PReFx, leading to interesting results linking PReFx
with white matter signal abnormalities and ageing in the cortex [162]. These studies
of course require larger optical devices (e.g., 128 sources and 24 detectors used in [162]
compared to 32 sources and 4 detectors used in our recordings) and MRI images mapped
to the optical montages.

Finally, as discussed in Chapter 2, the brain is a substantially different medium for
blood flow compared to the rest of the body. Therefore, modelling wave reflections and
indices such as TI, PI and AI based on measurements taken from the brain requires
careful considerations of CPP (specifically, ICP) and possible pulsation/damping due to
CSF. Therefore, more complex assumptions need to be made to more accurately estimate
these indices inside the cerebrum. Examples of advanced cerebrovascular models are
present in the literature [190, 191]. However, the use of these models requires different
MRI flow measurements of arterial inflow, venous outflow and CSF pulsation in the
sub-arachnoid space and to add TCD and/or NiRS measurements with accurate spatial
information to the model.
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